메뉴 건너뛰기




Volumn 6, Issue , 2003, Pages 621-624

Adaptive robust kernel PCA algorithm

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; COMPUTER SIMULATION; ITERATIVE METHODS; PRINCIPAL COMPONENT ANALYSIS; ROBUSTNESS (CONTROL SYSTEMS);

EID: 0141630482     PISSN: 15206149     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (20)

References (6)
  • 2
    • 0029184173 scopus 로고
    • Robust principal component by Self-organizing Rules Based on Statistical Physics Approach
    • L. Xu and Alan L. Yuille, "Robust principal component by Self-organizing Rules Based on Statistical Physics Approach", IEEE Trans. Neural Networks, Vol. 6, No. 1. pp.131-143, 1995.
    • (1995) IEEE Trans. Neural Networks , vol.6 , Issue.1 , pp. 131-143
    • Xu, L.1    Yuille, A.L.2
  • 3
    • 0029061996 scopus 로고
    • Generalizations of principal component analysis, optimization problems, and neural networks
    • J. Karhunen, J. Joutsensalo, "Generalizations of principal component analysis, optimization problems, and neural networks", Neural Networks, Vol. 8, No. 4, pp.549-562, 1995.
    • (1995) Neural Networks , vol.8 , Issue.4 , pp. 549-562
    • Karhunen, J.1    Joutsensalo, J.2
  • 4
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear Component Analysis as a Kernel Eigenvalue Problem
    • B. Scholkopf, A. Smola and K. R. Muller, "Nonlinear Component Analysis as a Kernel Eigenvalue Problem", Neural Computing., Vol. 10, No. 5, pp.1299-1319, 1998.
    • (1998) Neural Computing. , vol.10 , Issue.5 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.2    Muller, K.R.3
  • 5
    • 0036565280 scopus 로고    scopus 로고
    • Mercer Kernel Based Clustering in Feature Space
    • M. Girolami. "Mercer Kernel Based Clustering in Feature Space", IEEE Trans. Neural Networks, Vol. 13, No. 5, pp. 780-784, 2002.
    • (2002) IEEE Trans. Neural Networks , vol.13 , Issue.5 , pp. 780-784
    • Girolami, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.