-
1
-
-
0036923209
-
Rule-based anomaly pattern detection for detecting disease outbreaks
-
Ford K, ed. Cambridge, MA: MIT Press
-
Wong W, Moore AW, Cooper G, Wagner M. Rule-based anomaly pattern detection for detecting disease outbreaks. In: Ford K, ed. Proceedings of the 18th National Conference on Artificial Intelligence (AAAI-02). Cambridge, MA: MIT Press; 2002:217-223. Available at: www.autonlab.org/.
-
(2002)
Proceedings of the 18th National Conference on Artificial Intelligence (AAAI-02)
, pp. 217-223
-
-
Wong, W.1
Moore, A.W.2
Cooper, G.3
Wagner, M.4
-
2
-
-
77949731575
-
Temporal sequence learning and data reduction for anomaly detection
-
Lane T, Brodley CE. Temporal sequence learning and data reduction for anomaly detection. ACM Trans Inform Syst Security. 1999;2:295-331.
-
(1999)
ACM Trans Inform Syst Security
, vol.2
, pp. 295-331
-
-
Lane, T.1
Brodley, C.E.2
-
3
-
-
0009900351
-
Anomaly detection over noisy data using learned probability distributions
-
Langley P, ed. San Francisco: Morgan Kaufmann
-
Eskin E. Anomaly detection over noisy data using learned probability distributions. In: Langley P, ed. Proceedings of the 2000 International Conference on Machine Learning (ICML-2000). San Francisco: Morgan Kaufmann; 2000:255-262.
-
(2000)
Proceedings of the 2000 International Conference on Machine Learning (ICML-2000)
, pp. 255-262
-
-
Eskin, E.1
-
5
-
-
0035512260
-
The emerging science of very early detection of disease outbreaks
-
Wagner MM, Tsui FC, Espino JU, et al. The emerging science of very early detection of disease outbreaks. J Public Health Manage Pract. 2001;7(6):51-59.
-
(2001)
J Public Health Manage Pract
, vol.7
, Issue.6
, pp. 51-59
-
-
Wagner, M.M.1
Tsui, F.C.2
Espino, J.U.3
-
6
-
-
0028480283
-
Novelty detection and neural network validation
-
Bishop CM. Novelty detection and neural network validation. IEEE ProcVision, Image Signal Proc. 1994;141:217-222.
-
(1994)
IEEE ProcVision, Image Signal Proc
, vol.141
, pp. 217-222
-
-
Bishop, C.M.1
-
7
-
-
0012253727
-
Bayesian approaches to failure prediction for disk drives
-
Brodley CE, Danyluk AP, eds. San Francisco, CA: Morgan Kaufmann
-
Hamerly G, Elkan C. Bayesian approaches to failure prediction for disk drives. In: Brodley CE, Danyluk AP, eds. Proceedings of the 18th International Conference on Machine Learning. San Francisco, CA: Morgan Kaufmann; 2001:202-209.
-
(2001)
Proceedings of the 18th International Conference on Machine Learning
, pp. 202-209
-
-
Hamerly, G.1
Elkan, C.2
-
8
-
-
0002109327
-
Detecting change in categorical data: Mining contrast sets
-
Chaudhuri S, Madigan D, eds. New York: Association for Computing Machinery
-
Bay SD, Pazzani MJ. Detecting change in categorical data: Mining contrast sets. In: Chaudhuri S, Madigan D, eds. Knowledge Discovery and Data Mining. New York: Association for Computing Machinery; 1999:302-306.
-
(1999)
Knowledge Discovery and Data Mining
, pp. 302-306
-
-
Bay, S.D.1
Pazzani, M.J.2
-
9
-
-
0031162961
-
Dynamic itemset counting and implication rules for market basket data
-
Peckham J, ed. New York: ACM Press
-
Brin S, Motwani R, Ullman JD, Tsur S. Dynamic itemset counting and implication rules for market basket data. In: Peckham J, ed. SIGMOD 1997, Proceedings ACM SIGMOD International Conference on Management of Data, May 13-15, 1997, Tucson, Arizona, USA. New York: ACM Press; 1997:255-264.
-
(1997)
SIGMOD 1997, Proceedings ACM SIGMOD International Conference on Management of Data, May 13-15, 1997, Tucson, Arizona, USA
, pp. 255-264
-
-
Brin, S.1
Motwani, R.2
Ullman, J.D.3
Tsur, S.4
-
10
-
-
0001677717
-
Controlling the false discovery rate: A practical and powerful approach to multiple testing
-
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc, Series B. 1995;57:289-300.
-
(1995)
J Roy Stat Soc, Series B
, vol.57
, pp. 289-300
-
-
Benjamini, Y.1
Hochberg, Y.2
|