-
1
-
-
0000815745
-
Spectral properties of Schrödinger operators and scattering theory
-
Agmon, S. (1975). Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 2(2):151-218.
-
(1975)
Ann. Scuola Norm. Sup. Pisa Cl. Sci.
, vol.2
, Issue.2
, pp. 151-218
-
-
Agmon, S.1
-
2
-
-
0002201548
-
Spectral and scattering theory for Schrödinger operators
-
Alsholm, P., Schmidt, G. (1970/1971). Spectral and scattering theory for Schrödinger operators. Arch. Rational Mech. Anal. 40:281-311.
-
(1970)
Arch. Rational Mech. Anal.
, vol.40
, pp. 281-311
-
-
Alsholm, P.1
Schmidt, G.2
-
3
-
-
0031282013
-
Weighted estimates for the Helmholtz equation and some applications
-
Barcelo, J. A., Ruiz, A., Vega, L. (1997). Weighted estimates for the Helmholtz equation and some applications. J. Funct. Anal. 150:356-382.
-
(1997)
J. Funct. Anal.
, vol.150
, pp. 356-382
-
-
Barcelo, J.A.1
Ruiz, A.2
Vega, L.3
-
5
-
-
51249166950
-
Decay and regularity for the Schrödinger equation
-
Ben-Artzi, M., Klainerman, S. (1992). Decay and regularity for the Schrödinger equation. J. Anal. Math. 58:25-37.
-
(1992)
J. Anal. Math.
, vol.58
, pp. 25-37
-
-
Ben-Artzi, M.1
Klainerman, S.2
-
6
-
-
34250297847
-
p′-Estimates for Fourier integral operators related to hyperbolic equations
-
p′-Estimates for Fourier integral operators related to hyperbolic equations. Math. Z. 152:273-286.
-
(1997)
Math. Z.
, vol.152
, pp. 273-286
-
-
Brenner, P.1
-
7
-
-
0141672978
-
-
Preprint
-
Burq, N., Planchon, F., Stalker, J., Tahvildar-Zadeh, S. (2002). Strichart estimates for the wave and Schrödinger equations with the inverse-square potential. Preprint.
-
(2002)
Strichart Estimates for the Wave and Schrödinger Equations with the Inverse-square Potential
-
-
Burq, N.1
Planchon, F.2
Stalker, J.3
Tahvildar-Zadeh, S.4
-
9
-
-
0035923674
-
Weighted decay estimates for the wave equation
-
D'Ancona, P., Georgiev, V., Kubo, H. (2001). Weighted decay estimates for the wave equation. J. Differential Equations 177(1): 146-208.
-
(2001)
J. Differential Equations
, vol.177
, Issue.1
, pp. 146-208
-
-
D'Ancona, P.1
Georgiev, V.2
Kubo, H.3
-
10
-
-
0141450020
-
The maximum principle and its applications
-
Englewood Cliff, NJ: Prentice Hall Inc.
-
Friedman, A. (1964). The maximum principle and its applications. Partial Differential Equations of Parabolic Type. Englewood Cliff, NJ: Prentice Hall Inc., p. 34.
-
(1964)
Partial Differential Equations of Parabolic Type
, pp. 34
-
-
Friedman, A.1
-
11
-
-
0141784912
-
Preliminaries from functional analysis
-
Tokyo: MSJ Memoirs. Mathematical Society of Japan
-
Georgiev, V. (2000). Preliminaries from functional analysis. Semilinear Hyperbolic Equations. Vol. 7. Tokyo: MSJ Memoirs. Mathematical Society of Japan, 19.
-
(2000)
Semilinear Hyperbolic Equations
, vol.7
, pp. 19
-
-
Georgiev, V.1
-
13
-
-
58149363006
-
Generalized Strichartz inequalities for the wave equation
-
Ginibre, J., Velo, G. (1995). Generalized Strichartz inequalities for the wave equation. J. Funct. Anal. 133(1):50-68.
-
(1995)
J. Funct. Anal.
, vol.133
, Issue.1
, pp. 50-68
-
-
Ginibre, J.1
Velo, G.2
-
14
-
-
0000324005
-
p-spaces and Besov spaces
-
Tokyo: Adv. Stud. Pure Math., Mathematical Society of Japan
-
p-spaces and Besov spaces. Spectral and Scattering Theory and Applications; Vol. 23. Tokyo: Adv. Stud. Pure Math., Mathematical Society of Japan, pp. 187-209.
-
(1994)
Spectral and Scattering Theory and Applications
, vol.23
, pp. 187-209
-
-
Jensen, A.1
Nakamura, S.2
-
15
-
-
0000643537
-
Weak and yet weaker solutions of semilinear wave equations
-
Kapitanski, L. (1994). Weak and yet weaker solutions of semilinear wave equations. Comm. Partial Differential Equations 19(9-10): 1629-1676.
-
(1994)
Comm. Partial Differential Equations
, vol.19
, Issue.9-10
, pp. 1629-1676
-
-
Kapitanski, L.1
-
16
-
-
0001138601
-
Endpoint Strichartz estimates
-
Keel, M., Tao, T. (1998). Endpoint Strichartz estimates. Amer. J. Math. 120(5):955-980.
-
(1998)
Amer. J. Math.
, vol.120
, Issue.5
, pp. 955-980
-
-
Keel, M.1
Tao, T.2
-
18
-
-
84902359278
-
Self-adjointness and the existence of dynamics, Theorem X.23
-
New York: Academic Press
-
Reed, M., Simon, S. (1975). Self-adjointness and the existence of dynamics, Theorem X.23. Methods of Modern Mathematical Physics, Fourier Analysis, Self-Adjointness. New York: Academic Press, p. 177.
-
(1975)
Methods of Modern Mathematical Physics, Fourier Analysis, Self-Adjointness
, pp. 177
-
-
Reed, M.1
Simon, S.2
-
20
-
-
0141784753
-
About the Strichartz estimate and the dispersive estimate
-
Visciglia, N. (2002). About the Strichartz estimate and the dispersive estimate. C. R. Acad. Bulgare Sci. 55(5):9-14.
-
(2002)
C. R. Acad. Bulgare Sci.
, vol.55
, Issue.5
, pp. 9-14
-
-
Visciglia, N.1
-
21
-
-
0141784911
-
The spectral theory of self-adjoint and normal operators, Theorem VII.17
-
New York: Springer-Verlag
-
Weidmann, J. (1980). The spectral theory of self-adjoint and normal operators, Theorem VII. 17. Linear Operators in Hubert Spaces Graduate Texts in Mathematics. New York: Springer-Verlag, p. 191.
-
(1980)
Linear Operators in Hubert Spaces Graduate Texts in Mathematics
, pp. 191
-
-
Weidmann, J.1
|