메뉴 건너뛰기




Volumn 2, Issue , 2003, Pages 1143-1148

Model Selection for K-Nearest Neighbors Regression Using VC Bounds

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; ASYMPTOTIC STABILITY; COMPUTATIONAL COMPLEXITY; COMPUTATIONAL METHODS; ERROR ANALYSIS; FUNCTIONS; MATHEMATICAL MODELS; PARAMETER ESTIMATION; PROBLEM SOLVING; SIGNAL TO NOISE RATIO;

EID: 0141572295     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (4)

References (11)
  • 4
    • 0001205879 scopus 로고
    • Measuring the VC-dimension of a learning machine
    • V. Vapnik, E. Levin and Y. Cun, "Measuring the VC-dimension of a learning machine", Neural Computation, 6, pp. 851-876, 1994
    • (1994) Neural Computation , vol.6 , pp. 851-876
    • Vapnik, V.1    Levin, E.2    Cun, Y.3
  • 5
    • 0034241362 scopus 로고    scopus 로고
    • Measuring the VC-dimension using optimized experimental design
    • X. Shao, V. Cherkassky and W. Li, "Measuring the VC-dimension using optimized experimental design", Neural Computation, 12, 8, pp. 1969-1986, 2000
    • (2000) Neural Computation , vol.12 , Issue.8 , pp. 1969-1986
    • Shao, X.1    Cherkassky, V.2    Li, W.3
  • 6
    • 0032595046 scopus 로고    scopus 로고
    • Model Complexity Control for Regression using VC Generalization Bounds
    • V. Cherkassky, X. Shao, F. Mulier, and V. Vapnik, "Model Complexity Control for Regression using VC Generalization Bounds", IEEE Trans. on Neural Networks, Vol 10, No 5., 1075 -1089, 1999
    • (1999) IEEE Trans. on Neural Networks , vol.10 , Issue.5 , pp. 1075-1089
    • Cherkassky, V.1    Shao, X.2    Mulier, F.3    Vapnik, V.4
  • 7
    • 0141688723 scopus 로고    scopus 로고
    • Model Complexity Control and Statistical Learning Theory
    • Kluwer
    • V. Cherkassky, "Model Complexity Control and Statistical Learning Theory", Natural Computing: An International Journal, Kluwer, 1,1, 109-133, 2002
    • (2002) Natural Computing: An International Journal , vol.1 , Issue.1 , pp. 109-133
    • Cherkassky, V.1
  • 8
    • 0037484691 scopus 로고    scopus 로고
    • Comparison of Model Selection for Regression
    • in press
    • V. Cherkassky and Y. Ma, "Comparison of Model Selection for Regression", Neural Computation, Vol 15, 7 in press, 2003
    • (2003) Neural Computation , vol.15 , pp. 7
    • Cherkassky, V.1    Ma, Y.2
  • 11
    • 0002432565 scopus 로고
    • Multivariate adaptive regression spines (with discussion)
    • J. Friedman, "Multivariate adaptive regression spines (with discussion)", Annals of Statistics, 19(1): pp 1-141, 1991
    • (1991) Annals of Statistics , vol.19 , Issue.1 , pp. 1-141
    • Friedman, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.