-
1
-
-
84867947404
-
Strengthened semidefinite relaxations via a second lifting for the max-cut problem
-
Anjos, M. F., H. Wolkowicz. 2002. Strengthened semidefinite relaxations via a second lifting for the max-cut problem. Discrete Appl. Math. 119 79-106.
-
(2002)
Discrete Appl. Math.
, vol.119
, pp. 79-106
-
-
Anjos, M.F.1
Wolkowicz, H.2
-
2
-
-
0000185277
-
A lift-and-project cutting plane algorithm for mixed 0-1 programs
-
Balas, E., S. Ceria, G. Cornuéjols. 1993. A lift-and-project cutting plane algorithm for mixed 0-1 programs. Math. Programming 58 295-324.
-
(1993)
Math. Programming
, vol.58
, pp. 295-324
-
-
Balas, E.1
Ceria, S.2
Cornuéjols, G.3
-
4
-
-
0000203558
-
A remark on the multidimensional moment problem
-
Berg, C., J. P. R. Christensen, C. U. Jensen. 1979. A remark on the multidimensional moment problem. Math. Ann. 243 163-169.
-
(1979)
Math. Ann.
, vol.243
, pp. 163-169
-
-
Berg, C.1
Christensen, J.P.R.2
Jensen, C.U.3
-
6
-
-
0000971541
-
Edmonds polytopes and a hierarchy of combinatorial problems
-
Chvátal, V. 1973. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Math. 4 305-337.
-
(1973)
Discrete Math.
, vol.4
, pp. 305-337
-
-
Chvátal, V.1
-
7
-
-
0007679136
-
On cutting-plane proofs in combinatorial optimization
-
____. W. Cook, M.Hartman. On cutting-plane proofs in combinatorial optimization. Linear Algebra Appl. 114/115 455-499.
-
(1989)
Linear Algebra Appl.
, vol.114-115
, pp. 455-499
-
-
Chvátal, V.1
Cook, W.2
Hartman, M.3
-
8
-
-
0035261799
-
On the matrix-cut rank of polyhedra
-
Cook, W., S. Dash. 2001. On the matrix-cut rank of polyhedra. Math. Oper. Res. 26 19-30.
-
(2001)
Math. Oper. Res.
, vol.26
, pp. 19-30
-
-
Cook, W.1
Dash, S.2
-
9
-
-
26344442759
-
On the rank of mixed 0-1 polyhedra
-
K. Aardal, A. M. H. Gerards, eds.
-
Cornuéjols, G., Y. Li. 2001. On the rank of mixed 0-1 polyhedra. K. Aardal, A. M. H. Gerards, eds. Integer Programming and Combinatorial Optimization 2001, Lecture Notes in Computer Science, No. 2081, 71-77.
-
(2001)
Integer Programming and Combinatorial Optimization 2001, Lecture Notes in Computer Science
, Issue.2081
, pp. 71-77
-
-
Cornuéjols, G.1
Li, Y.2
-
10
-
-
23044517911
-
The truncated complex K-moment problem
-
Curto, R. E., L. A. Fialkow. 2000. The truncated complex K-moment problem. Trans. Amer. Math. Soc. 352 2825-2855.
-
(2000)
Trans. Amer. Math. Soc.
, vol.352
, pp. 2825-2855
-
-
Curto, R.E.1
Fialkow, L.A.2
-
11
-
-
0036433723
-
Approximating the stability number of a graph via copositive programming
-
de Klerk, E., D. V. Pasechnik. 2002. Approximating the stability number of a graph via copositive programming. SIAM J. Optim. 12 875-892.
-
(2002)
SIAM J. Optim.
, vol.12
, pp. 875-892
-
-
De Klerk, E.1
Pasechnik, D.V.2
-
12
-
-
0039522018
-
On the membership problem for the elementary closure of a polyhedron
-
Eisenbrand, F. 2000. On the membership problem for the elementary closure of a polyhedron. Combinatorica 19 299-300.
-
(2000)
Combinatorica
, vol.19
, pp. 299-300
-
-
Eisenbrand, F.1
-
13
-
-
84948952840
-
Bounds on the Chvátal rank of polytopes in the 0/1 cube
-
G. Cornuéjols, R. E. Burkard, G. J. Woeginger, eds.
-
____. A. S. Schulz. 1999. Bounds on the Chvátal rank of polytopes in the 0/1 cube. G. Cornuéjols, R. E. Burkard, G. J. Woeginger, eds. Integer Programming and Combinatorial Optimization 1999, Lecture Notes in Computer Science, No. 1610, 137-150.
-
(1999)
Integer Programming and Combinatorial Optimization 1999, Lecture Notes in Computer Science
, Issue.1610
, pp. 137-150
-
-
Eisenbrand, F.1
Shulz, A.S.2
-
14
-
-
0001923625
-
The multidimensional moment problem
-
Fuglede, B. 1983. The multidimensional moment problem. Expositiones Math. 1 47-65.
-
(1983)
Expositiones Math.
, vol.1
, pp. 47-65
-
-
Fuglede, B.1
-
15
-
-
0000201892
-
Semidefinite programming relaxation for nonconvex quadratic programs
-
Fujie, T., M. Kojima. 1997. Semidefinite programming relaxation for nonconvex quadratic programs. J. Global Optim. 10 367-380.
-
(1997)
J. Global Optim.
, vol.10
, pp. 367-380
-
-
Fujie, T.1
Kojima, M.2
-
16
-
-
0035518191
-
When does the positive semidefiniteness constraint help in lifting procedures
-
Goemans, M. X., L. Tuncel. 2001. When does the positive semidefiniteness constraint help in lifting procedures. Math. Oper. Res. 26, 796-815.
-
(2001)
Math. Oper. Res.
, vol.26
, pp. 796-815
-
-
Goemans, M.X.1
Tuncel, L.2
-
17
-
-
84893574327
-
Improved approximation algorithms for maximum cuts and satisfiability problems using semidefinite programming
-
____, D. P. Williamson. 1995. Improved approximation algorithms for maximum cuts and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach. 42 1115-1145.
-
(1995)
J. Assoc. Comput. Mach.
, vol.42
, pp. 1115-1145
-
-
Goemansa, M.X.1
Williamson, D.P.2
-
18
-
-
0003957164
-
-
Springer Verlag, Berlin, New York
-
Grötschel, M., L. Lovász, A. Schrijver. 1988. Geometric Algorithms and Combinatorial Optimization. Springer Verlag, Berlin, New York.
-
(1988)
Geometric Algorithms and Combinatorial Optimization
-
-
Grötschel, M.1
Lovász, L.2
Schrijver, A.3
-
19
-
-
84972584455
-
Representing polynomials by positive linear functions on compact convex polyhedra
-
Handelman, D. 1988. Representing polynomials by positive linear functions on compact convex polyhedra. Pacific J. Math. 132 35-62
-
(1988)
Pacific J. Math.
, vol.132
, pp. 35-62
-
-
Handelman, D.1
-
20
-
-
0001656889
-
On the momentum problem for distributions in more than one dimension. I, II
-
Haviland, E. K. 1935. On the momentum problem for distributions in more than one dimension. I, II. Amer. J. Math. 57 562-568.
-
(1935)
Amer. J. Math.
, vol.57
, pp. 562-568
-
-
Haviland, E.K.1
-
21
-
-
0000336262
-
On the momentum problem for distributions in more than one dimension. I, II
-
____. 1936. On the momentum problem for distributions in more than one dimension. I, II. Amer. J. Math. 58 164-168.
-
(1936)
Amer. J. Math.
, vol.58
, pp. 164-168
-
-
Haviland, E.K.1
-
22
-
-
0003932318
-
Optimality conditions and LMI relaxations for 0-1 programs
-
Technical report no. 00099, CNRS-LAAS, Toulouse, France
-
Lasserre, J. B. 2000. Optimality conditions and LMI relaxations for 0-1 programs. Technical report no. 00099, CNRS-LAAS, Toulouse, France.
-
(2000)
-
-
Lasserre, J.B.1
-
23
-
-
0035238864
-
Global optimization with polynomials and the problem of moments
-
____. 2001a. Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11 796-817.
-
(2001)
SIAM J. Optim.
, vol.11
, pp. 796-817
-
-
Lasserre, J.B.1
-
24
-
-
39649093787
-
An explicit exact SDP relaxation for nonlinear 0-1 programs
-
K. Aardal, A. M. H. Gerards, eds.
-
____. 2001b. An explicit exact SDP relaxation for nonlinear 0-1 programs. K. Aardal, A. M. H. Gerards, eds. Integer Programming and Combinatorial Optimization 2001, Lecture Notes in Computer Science, No. 2081, 293-303.
-
(2001)
Integer Programming and Combinatorial Optimization 2001, Lecture Notes in Computer Science
, Issue.2081
, pp. 293-303
-
-
Lassere, J.B.1
-
25
-
-
0036577765
-
Semidefinite programming vs. LP relaxations for polynomial programming
-
____. 2002. Semidefinite programming vs. LP relaxations for polynomial programming. Math. Oper. Res. 27 347-360.
-
(2002)
Math. Oper. Res.
, vol.27
, pp. 347-360
-
-
Lasserre, J.B.1
-
26
-
-
0036013026
-
Tighter linear and semidefinite relaxations for max-cut based on the Lovász-Schrijver lift-and-project procedure
-
Laurent, M. 2001. Tighter linear and semidefinite relaxations for max-cut based on the Lovász-Schrijver lift-and-project procedure. SIAM J. Optim. 12 345-375.
-
(2001)
SIAM J. Optim.
, vol.12
, pp. 345-375
-
-
Laurent, M.1
-
28
-
-
0018292109
-
On the Shannon capacity of a graph
-
Lovász, L. 1979. On the Shannon capacity of a graph. IEEE Trans. Inform. Theory IT-25 1-7.
-
(1979)
IEEE Trans. Inform. Theory
, vol.IT-25
, pp. 1-7
-
-
Lovász, L.1
-
29
-
-
0001154274
-
Cones of matrices and set-functions and 0-1 optimization
-
____, A. Schrijver. 1991. Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optim. 1 166-190.
-
(1991)
SIAM J. Optim.
, vol.1
, pp. 166-190
-
-
Lovász, L.1
Schrijver, A.2
-
30
-
-
0001776805
-
Squared functional systems and optimization problems
-
J. B. G. Frenk, C. Roos, T. Terlaky, S. Zhang, eds.; Kluwer Academic Publishers, Utrecht, The Netherlands
-
Nesterov, Y. 2000. Squared functional systems and optimization problems. J. B. G. Frenk, C. Roos, T. Terlaky, S. Zhang, eds. High Performance Optimization. Kluwer Academic Publishers, Utrecht, The Netherlands, 405-440.
-
(2000)
High Performance Optimization
, pp. 405-440
-
-
Nesterov, Y.1
-
31
-
-
0003406070
-
Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization
-
Ph.D. thesis, California Institute of Technology, Pasadena, CA
-
Parrilo, P. A. 2000. Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. Ph.D. thesis, California Institute of Technology, Pasadena, CA.
-
(2000)
-
-
Parrilo, P.A.1
-
32
-
-
0000135301
-
Positive polynomials on compact semialgebraic sets
-
Putinar, M. 1993. Positive polynomials on compact semialgebraic sets. Indiana Univ. Math. J. 42 969-984.
-
(1993)
Indiana Univ. Math. J.
, vol.42
, pp. 969-984
-
-
Putinar, M.1
-
33
-
-
0141601288
-
Some concrete aspects of Hilbert's 17th problem
-
Report 98-002, Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Champaign, IL
-
Reznick, B. 1998. Some concrete aspects of Hilbert's 17th problem. Report 98-002, Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Champaign, IL.
-
(1998)
-
-
Reznick, B.1
-
34
-
-
0001250675
-
The K-moment problem for compact semialgebraic sets
-
Schmüdgen, K. 1991. The K-moment problem for compact semialgebraic sets. Math. Ann. 289 203-206.
-
(1991)
Math. Ann.
, vol.289
, pp. 203-206
-
-
Schmüdgen, K.1
-
35
-
-
0001321687
-
A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems
-
Sherali, H. D., W. P. Adams. 1990. A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Discrete Math. 3 411-430.
-
(1990)
SIAM J. Discrete Math.
, vol.3
, pp. 411-430
-
-
Sherali, H.D.1
Adams, W.P.2
-
36
-
-
0002500749
-
A hierarchy of relaxations and convex hull characterizations for mixed-integer zero-one programming problems
-
____, ____. 1994. A hierarchy of relaxations and convex hull characterizations for mixed-integer zero-one programming problems. Discrete Appl. Math. 52 83-106.
-
(1994)
Discrete Appl. Math.
, vol.52
, pp. 83-106
-
-
Sherali, H.D.1
Adams, W.P.2
-
38
-
-
0000571594
-
Exploiting special structures in constructing a hierarchy of relaxations for 0-1 mixed integer problems
-
____. ____, P. J. Driscoll. 1998. Exploiting special structures in constructing a hierarchy of relaxations for 0-1 mixed integer problems. Oper. Res. 46 396-405.
-
(1998)
Oper. Res.
, vol.46
, pp. 396-405
-
-
Sherali, H.D.1
Adams, W.P.2
Driscoll, P.J.3
-
39
-
-
0001642333
-
A global optimization algorithm for polynomial programming problems using a reformulation-linearization technique
-
____, C. H. Tuncbilek. 1992. A global optimization algorithm for polynomial programming problems using a Reformulation-Linearization Technique. J. Global Optim. 2 101-112.
-
(1992)
J. Global Optim.
, vol.2
, pp. 101-112
-
-
Sherali, H.D.1
Tuncbilek, C.H.2
-
40
-
-
0009656296
-
Reformulation-linearization/convexification relaxations for univariate and multivariate polynomial programming problems
-
____, ____. 1997. Reformulation-linearization/convexification relaxations for univariate and multivariate polynomial programming problems. Oper. Res. Lett. 21 1-10.
-
(1997)
Oper. Res. Lett.
, vol.21
, pp. 1-10
-
-
Sherali, H.D.1
Tuncbilek, C.H.2
-
41
-
-
0041139522
-
An approach to obtaining global extremums in polynomial mathematical programming problems
-
Shor, N. Z. An approach to obtaining global extremums in polynomial mathematical programming problems. Kibernetika 5 102-106.
-
(1987)
Kibernetika
, vol.5
, pp. 102-106
-
-
Shor, N.Z.1
-
43
-
-
0344642581
-
On a representation of the matching polytope via semidefinite liftings
-
Stephen, T., L. Tunçel. 1999. On a representation of the matching polytope via semidefinite liftings. Math. Oper. Res. 24 1-7.
-
(1999)
Math. Oper. Res.
, vol.24
, pp. 1-7
-
-
Stephen, T.1
Tunçel, L.2
-
44
-
-
84968486949
-
Hadamard determinants, Möbius functions, and the chromatic number of a graph
-
Wilf, H. S. 1968. Hadamard determinants, Möbius functions, and the chromatic number of a graph. Bull. Amer. Math. Soc. 74 960-964.
-
(1968)
Bull. Amer. Math. Soc.
, vol.74
, pp. 960-964
-
-
Wilf, H.S.1
|