메뉴 건너뛰기




Volumn 28, Issue 3, 2003, Pages 470-496

A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre relaxations for 0-1 programming

Author keywords

0 1 polytope; Cut polytope; Lift and project; Linear relaxation; Semidefinite relaxation; Stable set polytope

Indexed keywords

FUNCTIONS; INTEGER PROGRAMMING; LINEAR SYSTEMS; POLYNOMIALS; SET THEORY;

EID: 0141517272     PISSN: 0364765X     EISSN: None     Source Type: Journal    
DOI: 10.1287/moor.28.3.470.16391     Document Type: Article
Times cited : (301)

References (44)
  • 1
    • 84867947404 scopus 로고    scopus 로고
    • Strengthened semidefinite relaxations via a second lifting for the max-cut problem
    • Anjos, M. F., H. Wolkowicz. 2002. Strengthened semidefinite relaxations via a second lifting for the max-cut problem. Discrete Appl. Math. 119 79-106.
    • (2002) Discrete Appl. Math. , vol.119 , pp. 79-106
    • Anjos, M.F.1    Wolkowicz, H.2
  • 2
    • 0000185277 scopus 로고
    • A lift-and-project cutting plane algorithm for mixed 0-1 programs
    • Balas, E., S. Ceria, G. Cornuéjols. 1993. A lift-and-project cutting plane algorithm for mixed 0-1 programs. Math. Programming 58 295-324.
    • (1993) Math. Programming , vol.58 , pp. 295-324
    • Balas, E.1    Ceria, S.2    Cornuéjols, G.3
  • 4
    • 0000203558 scopus 로고
    • A remark on the multidimensional moment problem
    • Berg, C., J. P. R. Christensen, C. U. Jensen. 1979. A remark on the multidimensional moment problem. Math. Ann. 243 163-169.
    • (1979) Math. Ann. , vol.243 , pp. 163-169
    • Berg, C.1    Christensen, J.P.R.2    Jensen, C.U.3
  • 6
    • 0000971541 scopus 로고
    • Edmonds polytopes and a hierarchy of combinatorial problems
    • Chvátal, V. 1973. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Math. 4 305-337.
    • (1973) Discrete Math. , vol.4 , pp. 305-337
    • Chvátal, V.1
  • 7
    • 0007679136 scopus 로고
    • On cutting-plane proofs in combinatorial optimization
    • ____. W. Cook, M.Hartman. On cutting-plane proofs in combinatorial optimization. Linear Algebra Appl. 114/115 455-499.
    • (1989) Linear Algebra Appl. , vol.114-115 , pp. 455-499
    • Chvátal, V.1    Cook, W.2    Hartman, M.3
  • 8
    • 0035261799 scopus 로고    scopus 로고
    • On the matrix-cut rank of polyhedra
    • Cook, W., S. Dash. 2001. On the matrix-cut rank of polyhedra. Math. Oper. Res. 26 19-30.
    • (2001) Math. Oper. Res. , vol.26 , pp. 19-30
    • Cook, W.1    Dash, S.2
  • 10
    • 23044517911 scopus 로고    scopus 로고
    • The truncated complex K-moment problem
    • Curto, R. E., L. A. Fialkow. 2000. The truncated complex K-moment problem. Trans. Amer. Math. Soc. 352 2825-2855.
    • (2000) Trans. Amer. Math. Soc. , vol.352 , pp. 2825-2855
    • Curto, R.E.1    Fialkow, L.A.2
  • 11
    • 0036433723 scopus 로고    scopus 로고
    • Approximating the stability number of a graph via copositive programming
    • de Klerk, E., D. V. Pasechnik. 2002. Approximating the stability number of a graph via copositive programming. SIAM J. Optim. 12 875-892.
    • (2002) SIAM J. Optim. , vol.12 , pp. 875-892
    • De Klerk, E.1    Pasechnik, D.V.2
  • 12
    • 0039522018 scopus 로고    scopus 로고
    • On the membership problem for the elementary closure of a polyhedron
    • Eisenbrand, F. 2000. On the membership problem for the elementary closure of a polyhedron. Combinatorica 19 299-300.
    • (2000) Combinatorica , vol.19 , pp. 299-300
    • Eisenbrand, F.1
  • 14
    • 0001923625 scopus 로고
    • The multidimensional moment problem
    • Fuglede, B. 1983. The multidimensional moment problem. Expositiones Math. 1 47-65.
    • (1983) Expositiones Math. , vol.1 , pp. 47-65
    • Fuglede, B.1
  • 15
    • 0000201892 scopus 로고    scopus 로고
    • Semidefinite programming relaxation for nonconvex quadratic programs
    • Fujie, T., M. Kojima. 1997. Semidefinite programming relaxation for nonconvex quadratic programs. J. Global Optim. 10 367-380.
    • (1997) J. Global Optim. , vol.10 , pp. 367-380
    • Fujie, T.1    Kojima, M.2
  • 16
    • 0035518191 scopus 로고    scopus 로고
    • When does the positive semidefiniteness constraint help in lifting procedures
    • Goemans, M. X., L. Tuncel. 2001. When does the positive semidefiniteness constraint help in lifting procedures. Math. Oper. Res. 26, 796-815.
    • (2001) Math. Oper. Res. , vol.26 , pp. 796-815
    • Goemans, M.X.1    Tuncel, L.2
  • 17
    • 84893574327 scopus 로고
    • Improved approximation algorithms for maximum cuts and satisfiability problems using semidefinite programming
    • ____, D. P. Williamson. 1995. Improved approximation algorithms for maximum cuts and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach. 42 1115-1145.
    • (1995) J. Assoc. Comput. Mach. , vol.42 , pp. 1115-1145
    • Goemansa, M.X.1    Williamson, D.P.2
  • 19
    • 84972584455 scopus 로고
    • Representing polynomials by positive linear functions on compact convex polyhedra
    • Handelman, D. 1988. Representing polynomials by positive linear functions on compact convex polyhedra. Pacific J. Math. 132 35-62
    • (1988) Pacific J. Math. , vol.132 , pp. 35-62
    • Handelman, D.1
  • 20
    • 0001656889 scopus 로고
    • On the momentum problem for distributions in more than one dimension. I, II
    • Haviland, E. K. 1935. On the momentum problem for distributions in more than one dimension. I, II. Amer. J. Math. 57 562-568.
    • (1935) Amer. J. Math. , vol.57 , pp. 562-568
    • Haviland, E.K.1
  • 21
    • 0000336262 scopus 로고
    • On the momentum problem for distributions in more than one dimension. I, II
    • ____. 1936. On the momentum problem for distributions in more than one dimension. I, II. Amer. J. Math. 58 164-168.
    • (1936) Amer. J. Math. , vol.58 , pp. 164-168
    • Haviland, E.K.1
  • 22
    • 0003932318 scopus 로고    scopus 로고
    • Optimality conditions and LMI relaxations for 0-1 programs
    • Technical report no. 00099, CNRS-LAAS, Toulouse, France
    • Lasserre, J. B. 2000. Optimality conditions and LMI relaxations for 0-1 programs. Technical report no. 00099, CNRS-LAAS, Toulouse, France.
    • (2000)
    • Lasserre, J.B.1
  • 23
    • 0035238864 scopus 로고    scopus 로고
    • Global optimization with polynomials and the problem of moments
    • ____. 2001a. Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11 796-817.
    • (2001) SIAM J. Optim. , vol.11 , pp. 796-817
    • Lasserre, J.B.1
  • 25
    • 0036577765 scopus 로고    scopus 로고
    • Semidefinite programming vs. LP relaxations for polynomial programming
    • ____. 2002. Semidefinite programming vs. LP relaxations for polynomial programming. Math. Oper. Res. 27 347-360.
    • (2002) Math. Oper. Res. , vol.27 , pp. 347-360
    • Lasserre, J.B.1
  • 26
    • 0036013026 scopus 로고    scopus 로고
    • Tighter linear and semidefinite relaxations for max-cut based on the Lovász-Schrijver lift-and-project procedure
    • Laurent, M. 2001. Tighter linear and semidefinite relaxations for max-cut based on the Lovász-Schrijver lift-and-project procedure. SIAM J. Optim. 12 345-375.
    • (2001) SIAM J. Optim. , vol.12 , pp. 345-375
    • Laurent, M.1
  • 28
    • 0018292109 scopus 로고
    • On the Shannon capacity of a graph
    • Lovász, L. 1979. On the Shannon capacity of a graph. IEEE Trans. Inform. Theory IT-25 1-7.
    • (1979) IEEE Trans. Inform. Theory , vol.IT-25 , pp. 1-7
    • Lovász, L.1
  • 29
    • 0001154274 scopus 로고
    • Cones of matrices and set-functions and 0-1 optimization
    • ____, A. Schrijver. 1991. Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optim. 1 166-190.
    • (1991) SIAM J. Optim. , vol.1 , pp. 166-190
    • Lovász, L.1    Schrijver, A.2
  • 30
    • 0001776805 scopus 로고    scopus 로고
    • Squared functional systems and optimization problems
    • J. B. G. Frenk, C. Roos, T. Terlaky, S. Zhang, eds.; Kluwer Academic Publishers, Utrecht, The Netherlands
    • Nesterov, Y. 2000. Squared functional systems and optimization problems. J. B. G. Frenk, C. Roos, T. Terlaky, S. Zhang, eds. High Performance Optimization. Kluwer Academic Publishers, Utrecht, The Netherlands, 405-440.
    • (2000) High Performance Optimization , pp. 405-440
    • Nesterov, Y.1
  • 31
    • 0003406070 scopus 로고    scopus 로고
    • Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization
    • Ph.D. thesis, California Institute of Technology, Pasadena, CA
    • Parrilo, P. A. 2000. Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. Ph.D. thesis, California Institute of Technology, Pasadena, CA.
    • (2000)
    • Parrilo, P.A.1
  • 32
    • 0000135301 scopus 로고
    • Positive polynomials on compact semialgebraic sets
    • Putinar, M. 1993. Positive polynomials on compact semialgebraic sets. Indiana Univ. Math. J. 42 969-984.
    • (1993) Indiana Univ. Math. J. , vol.42 , pp. 969-984
    • Putinar, M.1
  • 33
    • 0141601288 scopus 로고    scopus 로고
    • Some concrete aspects of Hilbert's 17th problem
    • Report 98-002, Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Champaign, IL
    • Reznick, B. 1998. Some concrete aspects of Hilbert's 17th problem. Report 98-002, Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Champaign, IL.
    • (1998)
    • Reznick, B.1
  • 34
    • 0001250675 scopus 로고
    • The K-moment problem for compact semialgebraic sets
    • Schmüdgen, K. 1991. The K-moment problem for compact semialgebraic sets. Math. Ann. 289 203-206.
    • (1991) Math. Ann. , vol.289 , pp. 203-206
    • Schmüdgen, K.1
  • 35
    • 0001321687 scopus 로고
    • A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems
    • Sherali, H. D., W. P. Adams. 1990. A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Discrete Math. 3 411-430.
    • (1990) SIAM J. Discrete Math. , vol.3 , pp. 411-430
    • Sherali, H.D.1    Adams, W.P.2
  • 36
    • 0002500749 scopus 로고
    • A hierarchy of relaxations and convex hull characterizations for mixed-integer zero-one programming problems
    • ____, ____. 1994. A hierarchy of relaxations and convex hull characterizations for mixed-integer zero-one programming problems. Discrete Appl. Math. 52 83-106.
    • (1994) Discrete Appl. Math. , vol.52 , pp. 83-106
    • Sherali, H.D.1    Adams, W.P.2
  • 38
    • 0000571594 scopus 로고    scopus 로고
    • Exploiting special structures in constructing a hierarchy of relaxations for 0-1 mixed integer problems
    • ____. ____, P. J. Driscoll. 1998. Exploiting special structures in constructing a hierarchy of relaxations for 0-1 mixed integer problems. Oper. Res. 46 396-405.
    • (1998) Oper. Res. , vol.46 , pp. 396-405
    • Sherali, H.D.1    Adams, W.P.2    Driscoll, P.J.3
  • 39
    • 0001642333 scopus 로고
    • A global optimization algorithm for polynomial programming problems using a reformulation-linearization technique
    • ____, C. H. Tuncbilek. 1992. A global optimization algorithm for polynomial programming problems using a Reformulation-Linearization Technique. J. Global Optim. 2 101-112.
    • (1992) J. Global Optim. , vol.2 , pp. 101-112
    • Sherali, H.D.1    Tuncbilek, C.H.2
  • 40
    • 0009656296 scopus 로고    scopus 로고
    • Reformulation-linearization/convexification relaxations for univariate and multivariate polynomial programming problems
    • ____, ____. 1997. Reformulation-linearization/convexification relaxations for univariate and multivariate polynomial programming problems. Oper. Res. Lett. 21 1-10.
    • (1997) Oper. Res. Lett. , vol.21 , pp. 1-10
    • Sherali, H.D.1    Tuncbilek, C.H.2
  • 41
    • 0041139522 scopus 로고
    • An approach to obtaining global extremums in polynomial mathematical programming problems
    • Shor, N. Z. An approach to obtaining global extremums in polynomial mathematical programming problems. Kibernetika 5 102-106.
    • (1987) Kibernetika , vol.5 , pp. 102-106
    • Shor, N.Z.1
  • 43
    • 0344642581 scopus 로고    scopus 로고
    • On a representation of the matching polytope via semidefinite liftings
    • Stephen, T., L. Tunçel. 1999. On a representation of the matching polytope via semidefinite liftings. Math. Oper. Res. 24 1-7.
    • (1999) Math. Oper. Res. , vol.24 , pp. 1-7
    • Stephen, T.1    Tunçel, L.2
  • 44
    • 84968486949 scopus 로고
    • Hadamard determinants, Möbius functions, and the chromatic number of a graph
    • Wilf, H. S. 1968. Hadamard determinants, Möbius functions, and the chromatic number of a graph. Bull. Amer. Math. Soc. 74 960-964.
    • (1968) Bull. Amer. Math. Soc. , vol.74 , pp. 960-964
    • Wilf, H.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.