메뉴 건너뛰기




Volumn 71, Issue 9, 2003, Pages 950-951

The Dirac equation with a confining potential

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0043263397     PISSN: 00029505     EISSN: None     Source Type: Journal    
DOI: 10.1119/1.1555891     Document Type: Article
Times cited : (23)

References (15)
  • 1
    • 0346509300 scopus 로고    scopus 로고
    • Fun and frustration with quarkonium in a 1 + 1 dimension
    • R. S. Bhalerao and Budh Ram, "Fun and frustration with quarkonium in a 1 + 1 dimension," Am. J. Phys. 69, 817-818 (2001).
    • (2001) Am. J. Phys. , vol.69 , pp. 817-818
    • Bhalerao, R.S.1    Ram, B.2
  • 2
    • 42049094310 scopus 로고    scopus 로고
    • Comment on 'fun and frustration with quarkonium in a 1 + 1 dimension,' by R. S. Bhalerao and B. Ram [Am. J. Phys. 69 (7), 817-818 (2001)]
    • Antonio S. de Castro, "Comment on 'Fun and frustration with quarkonium in a 1 + 1 dimension,' by R. S. Bhalerao and B. Ram [Am. J. Phys. 69 (7), 817-818 (2001)]," Am. J. Phys. 70, 450-451 (2002).
    • (2002) Am. J. Phys. , vol.70 , pp. 450-451
    • De Castro, A.S.1
  • 3
    • 0011756738 scopus 로고    scopus 로고
    • Comment on 'Fun and frustration with quarkonium in a 1 + 1 dimension,' by R. S. Bhalerao and B. Ram [Am. J. Phys. 69 (7), 817-818 (2001)]
    • M. Cavalcanti, "Comment on 'Fun and frustration with quarkonium in a 1 + 1 dimension,' by R. S. Bhalerao and B. Ram [Am. J. Phys. 69 (7), 817-818 (2001)]," Am. J. Phys. 70, 451-452 (2002).
    • (2002) Am. J. Phys. , vol.70 , pp. 451-452
    • Cavalcanti, R.M.1
  • 4
    • 23044534423 scopus 로고    scopus 로고
    • Solution of the one-dimensional Dirac equation with a linear scalar potential
    • John R. Killer, "Solution of the one-dimensional Dirac equation with a linear scalar potential," Am. J. Phys. 70, 522-524 (2002).
    • (2002) Am. J. Phys. , vol.70 , pp. 522-524
    • Killer, J.R.1
  • 5
    • 33646624131 scopus 로고    scopus 로고
    • note
    • ν. The index ν was apparently assumed to be a positive integer in Ref. 1, which is why only one bound state was found. But ν is in general a noninteger as shown in Refs. 2-4.
  • 6
    • 0008897162 scopus 로고
    • Scalar binding of quarks
    • C. L. Critchfield, "Scalar binding of quarks," Phys. Rev. D 12, 923-925 (1975); "Scalar potentials in the Dirac equation," J. Math. Phys. 17, 261-266 (1976).
    • (1975) Phys. Rev. D , vol.12 , pp. 923-925
    • Critchfield, C.L.1
  • 7
    • 36749119509 scopus 로고
    • Scalar potentials in the Dirac equation
    • C. L. Critchfield, "Scalar binding of quarks," Phys. Rev. D 12, 923-925 (1975); "Scalar potentials in the Dirac equation," J. Math. Phys. 17, 261-266 (1976).
    • (1976) J. Math. Phys. , vol.17 , pp. 261-266
  • 8
    • 84967858944 scopus 로고
    • Quark confining potential in relativistic equations
    • Budh Ram, "Quark confining potential in relativistic Dequtions," Am. J. Phys. 50, 549-551 (1982).
    • (1982) Am. J. Phys. , vol.50 , pp. 549-551
    • Ram, B.1
  • 9
    • 33646620619 scopus 로고    scopus 로고
    • note
    • The terminology such as "Lorentz scalar" in the present context is not strictly legitimate. For example, the "scalar potential" S(x)=g|x| is not a Lorentz scalar because |x| is not invariant under the Lorentz transformations. However, we adopt this commonly used terminology.
  • 11
    • 0010234713 scopus 로고
    • Supersymmetry aspects of the Dirac equation in one dimension with a Lorentz scalar potential
    • Y. Nogami and F. M. Toyama, "Supersymmetry aspects of the Dirac equation in one dimension with a Lorentz scalar potential," Phys. Rev. A 47, 1708-1714 (1993).
    • (1993) Phys. Rev. A , vol.47 , pp. 1708-1714
    • Nogami, Y.1    Toyama, F.M.2
  • 12
    • 33646620415 scopus 로고    scopus 로고
    • note
    • -1/2. This different choice of χ, which we do not use in this note, results in the same physics, that is, the same wave functions (in terms of u and v), and the same energy eigenvalues. In this connection, note that Eq. (2) is invariant under the simultaneous substitutions of u→v, v→u, E→-E, and V→-V. If V=0, there is a symmetry between positive and negative energy eigenvalues.
  • 13
    • 33646627979 scopus 로고    scopus 로고
    • note
    • (n) of Eq. (9).
  • 14
    • 0038639817 scopus 로고
    • Zero-range potential for the Dirac equation in two and three space dimensions: Elementary proof of Svenson's theorem
    • F. A. B. Coutinho and Y. Nogami, "Zero-range potential for the Dirac equation in two and three space dimensions: Elementary proof of Svenson's theorem," Phys. Rev. A 42, 5716-5719 (1990)
    • (1990) Phys. Rev. A , vol.42 , pp. 5716-5719
    • Coutinho, F.A.B.1    Nogami, Y.2
  • 15
    • 0003758310 scopus 로고
    • McGraw-Hill, New York, 3rd ed., Chap. 13
    • L. I. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1968), 3rd ed., Chap. 13.
    • (1968) Quantum Mechanics
    • Schiff, L.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.