-
1
-
-
0346509300
-
Fun and frustration with quarkonium in a 1 + 1 dimension
-
R. S. Bhalerao and Budh Ram, "Fun and frustration with quarkonium in a 1 + 1 dimension," Am. J. Phys. 69, 817-818 (2001).
-
(2001)
Am. J. Phys.
, vol.69
, pp. 817-818
-
-
Bhalerao, R.S.1
Ram, B.2
-
2
-
-
42049094310
-
Comment on 'fun and frustration with quarkonium in a 1 + 1 dimension,' by R. S. Bhalerao and B. Ram [Am. J. Phys. 69 (7), 817-818 (2001)]
-
Antonio S. de Castro, "Comment on 'Fun and frustration with quarkonium in a 1 + 1 dimension,' by R. S. Bhalerao and B. Ram [Am. J. Phys. 69 (7), 817-818 (2001)]," Am. J. Phys. 70, 450-451 (2002).
-
(2002)
Am. J. Phys.
, vol.70
, pp. 450-451
-
-
De Castro, A.S.1
-
3
-
-
0011756738
-
Comment on 'Fun and frustration with quarkonium in a 1 + 1 dimension,' by R. S. Bhalerao and B. Ram [Am. J. Phys. 69 (7), 817-818 (2001)]
-
M. Cavalcanti, "Comment on 'Fun and frustration with quarkonium in a 1 + 1 dimension,' by R. S. Bhalerao and B. Ram [Am. J. Phys. 69 (7), 817-818 (2001)]," Am. J. Phys. 70, 451-452 (2002).
-
(2002)
Am. J. Phys.
, vol.70
, pp. 451-452
-
-
Cavalcanti, R.M.1
-
4
-
-
23044534423
-
Solution of the one-dimensional Dirac equation with a linear scalar potential
-
John R. Killer, "Solution of the one-dimensional Dirac equation with a linear scalar potential," Am. J. Phys. 70, 522-524 (2002).
-
(2002)
Am. J. Phys.
, vol.70
, pp. 522-524
-
-
Killer, J.R.1
-
5
-
-
33646624131
-
-
note
-
ν. The index ν was apparently assumed to be a positive integer in Ref. 1, which is why only one bound state was found. But ν is in general a noninteger as shown in Refs. 2-4.
-
-
-
-
6
-
-
0008897162
-
Scalar binding of quarks
-
C. L. Critchfield, "Scalar binding of quarks," Phys. Rev. D 12, 923-925 (1975); "Scalar potentials in the Dirac equation," J. Math. Phys. 17, 261-266 (1976).
-
(1975)
Phys. Rev. D
, vol.12
, pp. 923-925
-
-
Critchfield, C.L.1
-
7
-
-
36749119509
-
Scalar potentials in the Dirac equation
-
C. L. Critchfield, "Scalar binding of quarks," Phys. Rev. D 12, 923-925 (1975); "Scalar potentials in the Dirac equation," J. Math. Phys. 17, 261-266 (1976).
-
(1976)
J. Math. Phys.
, vol.17
, pp. 261-266
-
-
-
8
-
-
84967858944
-
Quark confining potential in relativistic equations
-
Budh Ram, "Quark confining potential in relativistic Dequtions," Am. J. Phys. 50, 549-551 (1982).
-
(1982)
Am. J. Phys.
, vol.50
, pp. 549-551
-
-
Ram, B.1
-
9
-
-
33646620619
-
-
note
-
The terminology such as "Lorentz scalar" in the present context is not strictly legitimate. For example, the "scalar potential" S(x)=g|x| is not a Lorentz scalar because |x| is not invariant under the Lorentz transformations. However, we adopt this commonly used terminology.
-
-
-
-
10
-
-
0002399816
-
Supersymmetry and the Dirac equation
-
F. Cooper, A. Khare, R. Musto, and A. Wipf, "Supersymmetry and the Dirac equation," Ann. Phys. (N.Y.) 187, 1-28 (1987).
-
(1987)
Ann. Phys. (N.Y.)
, vol.187
, pp. 1-28
-
-
Cooper, F.1
Khare, A.2
Musto, R.3
Wipf, A.4
-
11
-
-
0010234713
-
Supersymmetry aspects of the Dirac equation in one dimension with a Lorentz scalar potential
-
Y. Nogami and F. M. Toyama, "Supersymmetry aspects of the Dirac equation in one dimension with a Lorentz scalar potential," Phys. Rev. A 47, 1708-1714 (1993).
-
(1993)
Phys. Rev. A
, vol.47
, pp. 1708-1714
-
-
Nogami, Y.1
Toyama, F.M.2
-
12
-
-
33646620415
-
-
note
-
-1/2. This different choice of χ, which we do not use in this note, results in the same physics, that is, the same wave functions (in terms of u and v), and the same energy eigenvalues. In this connection, note that Eq. (2) is invariant under the simultaneous substitutions of u→v, v→u, E→-E, and V→-V. If V=0, there is a symmetry between positive and negative energy eigenvalues.
-
-
-
-
13
-
-
33646627979
-
-
note
-
(n) of Eq. (9).
-
-
-
-
14
-
-
0038639817
-
Zero-range potential for the Dirac equation in two and three space dimensions: Elementary proof of Svenson's theorem
-
F. A. B. Coutinho and Y. Nogami, "Zero-range potential for the Dirac equation in two and three space dimensions: Elementary proof of Svenson's theorem," Phys. Rev. A 42, 5716-5719 (1990)
-
(1990)
Phys. Rev. A
, vol.42
, pp. 5716-5719
-
-
Coutinho, F.A.B.1
Nogami, Y.2
-
15
-
-
0003758310
-
-
McGraw-Hill, New York, 3rd ed., Chap. 13
-
L. I. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1968), 3rd ed., Chap. 13.
-
(1968)
Quantum Mechanics
-
-
Schiff, L.I.1
|