-
1
-
-
0026931265
-
-
Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710.
-
(1992)
Nature
, vol.359
, pp. 710
-
-
Kresge, C.T.1
Leonowicz, M.E.2
Roth, W.J.3
Vartuli, J.C.4
Beck, J.S.5
-
2
-
-
0030199113
-
-
Zhao, X. S.; Lu, G. Q.; Miller, G. J. Ind. Eng. Chem. Res. 1996, 35, 2075.
-
(1996)
Ind. Eng. Chem. Res.
, vol.35
, pp. 2075
-
-
Zhao, X.S.1
Lu, G.Q.2
Miller, G.J.3
-
4
-
-
0034500248
-
-
Takahashi, H.; Li, Bo; Sasaki, T.; Miyazaki, C.; Kajino, T.; Inagaki, S. Chem. Mater. 2000, 12, 3301.
-
(2000)
Chem. Mater.
, vol.12
, pp. 3301
-
-
Takahashi, H.1
Li, B.2
Sasaki, T.3
Miyazaki, C.4
Kajino, T.5
Inagaki, S.6
-
5
-
-
0001217417
-
-
Okazaki, M.; Konishi, Y.; Toriyama, K. Chem. Phys. Lett. 2000, 328, 251.
-
(2000)
Chem. Phys. Lett.
, vol.328
, pp. 251
-
-
Okazaki, M.1
Konishi, Y.2
Toriyama, K.3
-
6
-
-
0031553299
-
-
Sun-Suh, H. M.; Luan, Z.; Kevan, L. J. Phys. Chem. B 1997, 101, 10455.
-
(1997)
J. Phys. Chem. B
, vol.101
, pp. 10455
-
-
Sun-Suh, H.M.1
Luan, Z.2
Kevan, L.3
-
7
-
-
0035960184
-
-
Konishi, Y.; Okazaki, M.; Toriyama, K.; Kasai, T. J. Phys. Chem. B 2001, 105, 9101.
-
(2001)
J. Phys. Chem. B
, vol.105
, pp. 9101
-
-
Konishi, Y.1
Okazaki, M.2
Toriyama, K.3
Kasai, T.4
-
8
-
-
0036211380
-
-
Okazaki, M.; Toriyama, K.; Kasai, T.; Oda, K. Phys. Chem. Chem. Phys. 2002, 4, 1201.
-
(2002)
Phys. Chem. Chem. Phys.
, vol.4
, pp. 1201
-
-
Okazaki, M.1
Toriyama, K.2
Kasai, T.3
Oda, K.4
-
10
-
-
0037262652
-
-
Okazaki, M.; Toriyama, K.; Sawaguchi, Y.; Oda, K. Appl. Magn. Reson. 2003, 23, 435.
-
(2003)
Appl. Magn. Reson.
, vol.23
, pp. 435
-
-
Okazaki, M.1
Toriyama, K.2
Sawaguchi, Y.3
Oda, K.4
-
11
-
-
0032092286
-
-
Hansen, E. W.; Courivaud, F.; Karlsson, A.; Kolboe, S.; Staecker, M. Microporous Mesoporous Mater. 1998, 22, 309.
-
(1998)
Microporous Mesoporous Mater.
, vol.22
, pp. 309
-
-
Hansen, E.W.1
Courivaud, F.2
Karlsson, A.3
Kolboe, S.4
Staecker, M.5
-
12
-
-
0038357100
-
-
Gjerdaker, L.; Aksnes, D. W.; Sorland, G. H.; Staecker, M. Microporous Mesoporous Mater. 2001, 42, 89.
-
(2001)
Microporous Mesoporous Mater.
, vol.42
, pp. 89
-
-
Gjerdaker, L.1
Aksnes, D.W.2
Sorland, G.H.3
Staecker, M.4
-
13
-
-
0035359016
-
-
Stallmach, F.; Graeser, A.; Kaerger, J.; Krause, C.; Jeschke, M.; Oberhagemann, U.; Spange, S. Microporous Mesoporous Mater. 2001, 44-45, 745.
-
(2001)
Microporous Mesoporous Mater.
, vol.44-45
, pp. 745
-
-
Stallmach, F.1
Graeser, A.2
Kaerger, J.3
Krause, C.4
Jeschke, M.5
Oberhagemann, U.6
Spange, S.7
-
14
-
-
0348140887
-
-
Sorland, G. H.; Hafskjold, B.; Herstad, O. J. Magn. Reson. 1997, 124, 172.
-
(1997)
J. Magn. Reson.
, vol.124
, pp. 172
-
-
Sorland, G.H.1
Hafskjold, B.2
Herstad, O.3
-
16
-
-
0041944342
-
-
note
-
More than 1/4 of the solution exists outside the nanochannel even in the MCM-41 layer (ref 7). So, if the molecules do not exchange their positions between inside and outside of the nanochannel, we should observe an overlapped signal composed of both the sharp and the broad peaks for the molecules in the two regions.
-
-
-
-
18
-
-
85088761057
-
-
note
-
2 carbon of cyclohexane also decreases a little upon decreasing the cyclohexane content. This is simply explained by the increase in the number of alcohol molecules around the cyclohexane molecules.
-
-
-
-
20
-
-
0042945950
-
-
note
-
If the absorption lines are inhomogeneously broadened and no exchange process among them exists, the line shape remains Gaussian. If rapid exchange processes exist among these lines, on the other hand, the line shape is Lolentzian. See Chapter11 of ref 19.
-
-
-
-
21
-
-
0000211355
-
-
Karger, J.; Petzold, M.; Pfeifer, H.; Ernst, S.; Weitkamp, J. J. Catal. 1992, 136, 283.
-
(1992)
J. Catal.
, vol.136
, pp. 283
-
-
Karger, J.1
Petzold, M.2
Pfeifer, H.3
Ernst, S.4
Weitkamp, J.5
-
22
-
-
0346975342
-
-
Kukla, V.; Kornatowski, J.; Demuth, D.; Girnus, I.; Pfeifer, H.; Rees, L. V. C.; Schunk, S.; Unger, K. K.; Kaerger, J. Science 1996, 272, 702.
-
(1996)
Science
, vol.272
, pp. 702
-
-
Kukla, V.1
Kornatowski, J.2
Demuth, D.3
Girnus, I.4
Pfeifer, H.5
Rees, L.V.C.6
Schunk, S.7
Unger, K.K.8
Kaerger, J.9
-
23
-
-
0042945949
-
-
note
-
Hagen-Poiseuille's law, with which the flow rate is usually calculated for a solution in a tube, predicts that it takes about 3 min to flow a 2-propanol solution through a nanotube (i.d. 3.0 nm, length 3 μm) at a pressure of 200 atm.
-
-
-
|