메뉴 건너뛰기




Volumn 6, Issue 3, 2003, Pages 521-530

Specht ratio S(1) can be expressed by Kantorovich constant K(p): S(1) = exp[K′(1)] and its application

Author keywords

Kantorovich constant; Specht ratio

Indexed keywords


EID: 0043208861     PISSN: 13314343     EISSN: None     Source Type: Journal    
DOI: 10.7153/mia-06-48     Document Type: Article
Times cited : (12)

References (10)
  • 2
    • 0000428933 scopus 로고    scopus 로고
    • Determinant for positive operators and Specht's ratio
    • J. I. FUJII, S. IZUMINO AND Y. SEO, Determinant for positive operators and Specht's ratio, Scientiae Mathematicae, 1 (1998), 307-310.
    • (1998) Scientiae Mathematicae , vol.1 , pp. 307-310
    • Fujii, J.I.1    Izumino, S.2    Seo, Y.3
  • 3
    • 0000255314 scopus 로고    scopus 로고
    • Operator inequalities associated with Hölder-McCarthy and Kantorovich inequalities
    • T. FURUTA, Operator inequalities associated with Hölder-McCarthy and Kantorovich inequalities, J. Inequal. and Appl., 2 (1998), 137-148.
    • (1998) J. Inequal. and Appl. , vol.2 , pp. 137-148
    • Furuta, T.1
  • 4
    • 0000817760 scopus 로고    scopus 로고
    • Results under log A ≥ log B can be derived, from ones under A ≥ B ≥ 0 by Uchiyama's method-associated with Furuta and Kantorovich type operator inequalities
    • T. FURUTA, Results under log A ≥ log B can be derived, from ones under A ≥ B ≥ 0 by Uchiyama's method-associated with Furuta and Kantorovich type operator inequalities, Math. Inequal. and Appl., 3 (2000), 423-436.
    • (2000) Math. Inequal. and Appl. , vol.3 , pp. 423-436
    • Furuta, T.1
  • 6
    • 0001647866 scopus 로고
    • Convex inequalities in Hubert space
    • B. MOND AND J. E. PEČARIĆ, Convex inequalities in Hubert space, Houston J. Math., 19 (1993), 405-420.
    • (1993) Houston J. Math. , vol.19 , pp. 405-420
    • Mond, B.1    Pečarić, J.E.2
  • 7
    • 84895188676 scopus 로고
    • A matrix version of Ky Fan Generalization of the Kantorovich inequality
    • B. MOND AND J. E. PEČARIĆ, A matrix version of Ky Fan Generalization of the Kantorovich inequality, Linear and Multilinear Algebra, 36 (1994), 217-221.
    • (1994) Linear and Multilinear Algebra , vol.36 , pp. 217-221
    • Mond, B.1    Pečarić, J.E.2
  • 8
    • 0000695511 scopus 로고    scopus 로고
    • Some exponential operator inequalities
    • M. UCHIYAMA, Some exponential operator inequalities. Math. Inequal. Appl., 2 (1999), 469-471.
    • (1999) Math. Inequal. Appl. , vol.2 , pp. 469-471
    • Uchiyama, M.1
  • 9
    • 0001857191 scopus 로고    scopus 로고
    • An extension of Specht's theorem via Kantrovich inequality and related results
    • T. YAMAZAKI, An extension of Specht's theorem via Kantrovich inequality and related results, Math. Inequal. Appl., 3 (2000), 89-96
    • (2000) Math. Inequal. Appl. , vol.3 , pp. 89-96
    • Yamazaki, T.1
  • 10
    • 0002253177 scopus 로고    scopus 로고
    • Characterization of chaotic order associated with Kantorovich inequality
    • T. YAMAZAKI AND M. YANAGIDA, Characterization of chaotic order associated with Kantorovich inequality, Scientiae Mathematicae, 2 (1999), 37-50.
    • (1999) Scientiae Mathematicae , vol.2 , pp. 37-50
    • Yamazaki, T.1    Yanagida, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.