-
1
-
-
0003921310
-
Computing representation for radicals of finitely generated differential ideal
-
Laboratoire d'Informatique Fondamentale de Lille
-
BOULIER F., LAZARD D., OLLIVIER F. e PETITOT M., Computing representation for radicals of finitely generated differential ideal, Technical Report, Laboratoire d'Informatique Fondamentale de Lille (1999).
-
(1999)
Technical Report
-
-
Boulier, F.1
Lazard, D.2
Ollivier, F.3
Petitot, M.4
-
2
-
-
0025644712
-
Global identifiability of parameters of non linear systems with specified inputs: A comparison of methods
-
CHAPPEL M.J., GODFREY K.R. e VAJDA S., Global identifiability of parameters of non linear systems with specified inputs: A comparison of methods, Mathematical Biosciences, 102 (1990), 41-73.
-
(1990)
Mathematical Biosciences
, vol.102
, pp. 41-73
-
-
Chappel, M.J.1
Godfrey, K.R.2
Vajda, S.3
-
3
-
-
0041294376
-
Differential algebra methods for the study of the structural identifiability of biological rational polynomial models
-
Submitted
-
CHAPPEL M.J., MARGARIA G., RICCOMAGNO E. e WYNN H.P., Differential algebra methods for the study of the structural identifiability of biological rational polynomial models, Submitted to Mathematical Biosciences
-
Mathematical Biosciences
-
-
Chappel, M.J.1
Margaria, G.2
Riccomagno, E.3
Wynn, H.P.4
-
6
-
-
0041294375
-
Generalised standard bases with applications to control
-
OLLIVIER F., Generalised standard bases with applications to control, ECC91 European Control Conference, 1 (1991), 170-176.
-
(1991)
ECC91 European Control Conference
, vol.1
, pp. 170-176
-
-
Ollivier, F.1
-
7
-
-
0018017592
-
System identifiability based on the power series expansion of the solution
-
POHJANPALO H., System identifiability based on the power series expansion of the solution, Mathematical Biosciences, 41 (1978), 21-33.
-
(1978)
Mathematical Biosciences
, vol.41
, pp. 21-33
-
-
Pohjanpalo, H.1
-
10
-
-
0000370913
-
An implementation of the characteristic set method in Maple
-
Wang D. e PFALZGRAF J., EDITORS
-
WANG D., An implementation of the characteristic set method in Maple, In Wang D. e PFALZGRAF J., EDITORS, Automated practical reasoning: algebraic approaches (1995), 187-201.
-
(1995)
Automated Practical Reasoning: Algebraic Approaches
, pp. 187-201
-
-
Wang, D.1
|