메뉴 건너뛰기




Volumn 31, Issue 4, 2000, Pages 77-86

Dynamical Systems Produced by Recurrent Neural Networks

Author keywords

Affine neural dynamical system; Dynamical system learning; Hidden unit; Neural dynamical system; Recurrent neural network

Indexed keywords


EID: 0043184308     PISSN: 08821666     EISSN: None     Source Type: Journal    
DOI: 10.1002/(SICI)1520-684X(200004)31:4<77::AID-SCJ8>3.0.CO;2-Y     Document Type: Article
Times cited : (10)

References (23)
  • 2
    • 0000442791 scopus 로고
    • Generalization of back-propagation to recurrent neural networks
    • Pineda FJ. Generalization of back-propagation to recurrent neural networks. Phys Rev Lett 1987;59:2229-2232.
    • (1987) Phys Rev Lett , vol.59 , pp. 2229-2232
    • Pineda, F.J.1
  • 3
    • 0024875962 scopus 로고
    • Adaptive neural oscillator using continuous time back-propagation learning
    • Doya K, Yoshizawa S. Adaptive neural oscillator using continuous time back-propagation learning. Neural Networks 1989;2:375-385.
    • (1989) Neural Networks , vol.2 , pp. 375-385
    • Doya, K.1    Yoshizawa, S.2
  • 4
    • 0001202597 scopus 로고
    • Learning state space trajectories in recurrent neural networks
    • Pearlmutter BA. Learning state space trajectories in recurrent neural networks. Neural Computation 1989;1:263-269.
    • (1989) Neural Computation , vol.1 , pp. 263-269
    • Pearlmutter, B.A.1
  • 5
    • 0025095180 scopus 로고
    • A learning algorithm to teach spatiotemporal patterns to recurrent neural networks
    • Sato M. A learning algorithm to teach spatiotemporal patterns to recurrent neural networks. Biol Cybern 1990;62:259-263.
    • (1990) Biol Cybern , vol.62 , pp. 259-263
    • Sato, M.1
  • 7
    • 0000651310 scopus 로고
    • Green function method for fast on-line learning algorithm of recurrent neural networks
    • Moody JE, et al. editors. Morgan Kaufmann
    • Sun GZ, Chen HH, Lee YC. Green function method for fast on-line learning algorithm of recurrent neural networks. In: Moody JE, et al. editors. Advances in neural information processing systems, Vol. 4. Morgan Kaufmann; 1992. p 333-340.
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 333-340
    • Sun, G.Z.1    Chen, H.H.2    Lee, Y.C.3
  • 8
    • 0026685372 scopus 로고
    • Learning a trajectory using adjoint functions and teacher forcing
    • Toomarian NB, Barhen J. Learning a trajectory using adjoint functions and teacher forcing. Neural Networks 1992;5:473-484.
    • (1992) Neural Networks , vol.5 , pp. 473-484
    • Toomarian, N.B.1    Barhen, J.2
  • 9
    • 0028543249 scopus 로고
    • Hopfield net generation, encoding and classification of temporal trajectories
    • Bersini H, Saerens M, Sotelino LG. Hopfield net generation, encoding and classification of temporal trajectories. IEEE Trans Neural Networks 1994;5:945-953.
    • (1994) IEEE Trans Neural Networks , vol.5 , pp. 945-953
    • Bersini, H.1    Saerens, M.2    Sotelino, L.G.3
  • 10
    • 0027940938 scopus 로고
    • Classification of temporal trajectories by continuous time recurrent nets
    • Sotelino LG, Saerens M, Bersini H. Classification of temporal trajectories by continuous time recurrent nets. Neural Networks 1994;7:767-776.
    • (1994) Neural Networks , vol.7 , pp. 767-776
    • Sotelino, L.G.1    Saerens, M.2    Bersini, H.3
  • 11
    • 0029183826 scopus 로고
    • Gradient descent learning algorithm overview: A general dynamical systems perspective
    • Baldi P. Gradient descent learning algorithm overview: A general dynamical systems perspective. IEEE Trans Neural Networks 1995;6:182-195.
    • (1995) IEEE Trans Neural Networks , vol.6 , pp. 182-195
    • Baldi, P.1
  • 16
    • 0005275936 scopus 로고
    • An analysis of the process of learning continuous dynamical systems in neural networks using the theory of non-autonomous difference evaluation
    • in Japanese
    • Nakajima H, Ueda Y. An analysis of the process of learning continuous dynamical systems in neural networks using the theory of non-autonomous difference evaluation. Denshi Joho Tsushin Gakkai Ronbunshi 1995;J78-D-II:1890-1898. (in Japanese)
    • (1995) Denshi Joho Tsushin Gakkai Ronbunshi , vol.J78-D-II , pp. 1890-1898
    • Nakajima, H.1    Ueda, Y.2
  • 17
    • 0027154319 scopus 로고
    • Approximation of dynamical systems by continuous time recurrent neural networks
    • Funahashi K., Nakamura Y. Approximation of dynamical systems by continuous time recurrent neural networks. Neural Networks 1993;6:801-806.
    • (1993) Neural Networks , vol.6 , pp. 801-806
    • Funahashi, K.1    Nakamura, Y.2
  • 18
    • 0041714326 scopus 로고
    • Approximation theory, dynamical systems, and recurrent neural networks
    • Funahashi K. Approximation theory, dynamical systems, and recurrent neural networks. Proc 5th Int Colloq Differential Equations 1994;2:51-58.
    • (1994) Proc 5th int Colloq Differential Equations , vol.2 , pp. 51-58
    • Funahashi, K.1
  • 20
    • 84977060605 scopus 로고
    • On the dynamics of small continuous-time recurrent neural networks
    • Beer RD. On the dynamics of small continuous-time recurrent neural networks. Adaptive Behavior 1995;3:469-509.
    • (1995) Adaptive Behavior , vol.3 , pp. 469-509
    • Beer, R.D.1
  • 21
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko G. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems 1989;2:303-314.
    • (1989) Mathematics of Control, Signals and Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 22
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • Funahashi K. On the approximate realization of continuous mappings by neural networks. Neural Networks 1989;2:183-191.
    • (1989) Neural Networks , vol.2 , pp. 183-191
    • Funahashi, K.1
  • 23
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Networks 1989;2:359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.