-
6
-
-
33751392528
-
-
G. P. Bryant, Y. Jiang, M. Martin, and E. R. Grant, J. Phys. Chem. 96, 6875 (1992).
-
(1992)
J. Phys. Chem.
, vol.96
, pp. 6875
-
-
Bryant, G.P.1
Jiang, Y.2
Martin, M.3
Grant, E.R.4
-
9
-
-
0011514016
-
-
(a) E. Rabani, L. Ya. Baranov, R. D. Levine, and U. Even, Chem. Phys. Lett. 221, 473 (1994);
-
(1994)
Chem. Phys. Lett.
, vol.221
, pp. 473
-
-
Rabani, E.1
Baranov, L.Ya.2
Levine, R.D.3
Even, U.4
-
10
-
-
0001381828
-
-
(b) A. Mühlpfordt, U. Even, E. Rabani, and R. D. Levine, Phys. Rev. A 51, 3922 (1995).
-
(1995)
Phys. Rev. A
, vol.51
, pp. 3922
-
-
Mühlpfordt, A.1
Even, U.2
Rabani, E.3
Levine, R.D.4
-
12
-
-
0009660916
-
-
(a) P. Labastie, M. C. Bordas, B. Tribollet, and M. Broyer, Phys. Rev. Lett. 52, 1681 (1984);
-
(1984)
Phys. Rev. Lett.
, vol.52
, pp. 1681
-
-
Labastie, P.1
Bordas, M.C.2
Tribollet, B.3
Broyer, M.4
-
13
-
-
4243697394
-
-
(b) J. Chevaleyre, C. Bordas, M. Broyer, and P. Labastie, ibid. 57, 3027 (1986);
-
(1986)
Phys. Rev. Lett.
, vol.57
, pp. 3027
-
-
Chevaleyre, J.1
Bordas, C.2
Broyer, M.3
Labastie, P.4
-
14
-
-
0001318389
-
-
C. Bordas, P. F. Brevet, M. Broyer, J. Chevaleyre, P. Labastie, and J. P. Petto, ibid. 60, 917 (1988).
-
(1988)
Phys. Rev. Lett.
, vol.60
, pp. 917
-
-
Bordas, C.1
Brevet, P.F.2
Broyer, M.3
Chevaleyre, J.4
Labastie, P.5
Petto, J.P.6
-
19
-
-
0039321117
-
-
(b) C. Alt, W. G. Scherzer, H. L. Selzle, E. W. Schlag, L. Ya. Baranov, and R. D. Levine, J. Phys. Chem. 99, 1660 (1995).
-
(1995)
J. Phys. Chem.
, vol.99
, pp. 1660
-
-
Alt, C.1
Scherzer, W.G.2
Selzle, H.L.3
Schlag, E.W.4
Baranov, L.Ya.5
Levine, R.D.6
-
22
-
-
0038961462
-
-
(a) M. Fuji, T. Ebata, N. Mikami, and M. Ito, Chem. Phys. Lett. 101, 578 (1983);
-
(1983)
Chem. Phys. Lett.
, vol.101
, pp. 578
-
-
Fuji, M.1
Ebata, T.2
Mikami, N.3
Ito, M.4
-
23
-
-
0005760070
-
-
(b) G. J. Fisanick, T. S. Eichelberger IV, M. B. Robin, and N. A. Kuebler, J. Phys. Chem. 87, 2240 (1983).
-
(1983)
J. Phys. Chem.
, vol.87
, pp. 2240
-
-
Fisanick, G.J.1
Eichelberger IV, T.S.2
Robin, M.B.3
Kuebler, N.A.4
-
43
-
-
0016549414
-
-
(b) J. Opt. Soc. Am. 65. 979 (1975).
-
(1975)
J. Opt. Soc. Am.
, vol.65
, pp. 979
-
-
-
49
-
-
0011627745
-
-
E. Rabani, R. D. Levine, and U. Even, J, Phys. Chem. 98, 8834 (1994).
-
(1994)
J, Phys. Chem.
, vol.98
, pp. 8834
-
-
Rabani, E.1
Levine, R.D.2
Even, U.3
-
50
-
-
36449009266
-
-
E. Rabani, R. D. Levine, A. MÜhlpfordt, and U. Even, J. Chem. Phys. 102, 1619 (1995).
-
(1995)
J. Chem. Phys.
, vol.102
, pp. 1619
-
-
Rabani, E.1
Levine, R.D.2
Mühlpfordt, A.3
Even, U.4
-
64
-
-
0004098879
-
-
McGraw-Hill, New York
-
The relation between the survival probability and the time autocorrelation function is known from the theory of stochastic processes. [See, for example, A. Papoulis, The Fourier Integral and Its Applications (McGraw-Hill, New York, 1962).] In the context of electronic optical spectroscopy it has recently been discussed by Heller
-
(1962)
The Fourier Integral and Its Applications
-
-
Papoulis, A.1
-
79
-
-
0004122043
-
-
edited by R. B. Bernstein Plenum, New York
-
See, for example, W. R. Gentry, in Atom-Molecule Collision Theory, edited by R. B. Bernstein (Plenum, New York, 1979).
-
(1979)
Atom-Molecule Collision Theory
-
-
Gentry, W.R.1
-
80
-
-
85033054768
-
-
note
-
The adiabaticity parameter (Ref. 48) is a measure of the response of a motion to a time varying perturbation. In its very simplest form it is the ratio of the time scale of the perturbation to the period of the motion [e.g., equation (51.7) of L. D. Landau and E. M. Lifshitz, Mechanics (Pergamon, Oxford, 1976)]. When the ratio is large, the response of the motion is adiabatic, i.e., it can rapidly adjust to the perturbation. Here, as in many other cases, there are two motions which are coupled. Hence, the adiabatic parameter for one motion is the inverse of that parameter for the other. In classical mechanics it is the action variables which are "most adiabatic" [Ehrenfest (1914). See Ref. 10 and section 51 of L. D. Landau and E. M. Lifshitz, loc. cit.]. In Sec. II B it was already shown that the changes in the vibrational action are scaled by the factor x with respect to the changes in the principal action of the electron.
-
-
-
-
83
-
-
85033053945
-
-
By a shift we mean also a possible rotation of the normal mode coordinates, often known as the Duschinsky rotation. E. Rabani, Ph.D. thesis, Hebrew University, 1996
-
By a shift we mean also a possible rotation of the normal mode coordinates, often known as the Duschinsky rotation. E. Rabani, Ph.D. thesis, Hebrew University, 1996.
-
-
-
-
85
-
-
0001735751
-
-
For the discussion of the role of this shift for nonradiative electronic processes see R. Engelman and J. Jortner, Mol. Phys. 18, 145 (1970).
-
(1970)
Mol. Phys.
, vol.18
, pp. 145
-
-
Engelman, R.1
Jortner, J.2
-
87
-
-
85033051628
-
-
note
-
What is not discussed here is the coupling of angular momentum problem. At low n's one expects Hund's coupling case a to be valid. At high n's Hund's case d should be more realistic and this is verified by examination of the dynamics (Ref. 39).
-
-
-
|