-
1
-
-
0000260241
-
A parallel gradient descent method for learning in analog VLSI neural networks
-
eds. S. Hanson, J. Cowan and C. Giles, Morgan Kaufmann
-
J. Alspector et al., "A parallel gradient descent method for learning in analog VLSI neural networks", in Advances in Neural Information Processing Systems, eds. S. Hanson, J. Cowan and C. Giles, vol. 5, Morgan Kaufmann, 1993, pp. 836-844.
-
(1993)
Advances in Neural Information Processing Systems
, vol.5
, pp. 836-844
-
-
Alspector, J.1
-
3
-
-
0001149625
-
A fast stochastic error-descent algorithm for supervised learning and optimization
-
eds. S. Hanson, J. Cowan and C. Giles, Morgan Kaufmann
-
G. Cauwenberghs, "A fast stochastic error-descent algorithm for supervised learning and optimization", in Advances in Neural Information Processing Systems, eds. S. Hanson, J. Cowan and C. Giles, vol. 5, Morgan Kaufmann, 1993, pp. 244-251.
-
(1993)
Advances in Neural Information Processing Systems
, vol.5
, pp. 244-251
-
-
Cauwenberghs, G.1
-
5
-
-
0000610830
-
Summed weight neuron perturbation: An O(N) improvement over weight perturbation
-
Morgan Kaufmann
-
B. Flower and M. Jabri, "Summed weight neuron perturbation: An O(N) improvement over weight perturbation", in Advances in Neural Information Processing Systems, vol. 5, Morgan Kaufmann, 1992, pp. 212-219.
-
(1992)
Advances in Neural Information Processing Systems
, vol.5
, pp. 212-219
-
-
Flower, B.1
Jabri, M.2
-
7
-
-
0025838955
-
Back-propagation learning and nonidealities in analog neural network hardware
-
R. Frye, E. Reitman, and C. Wong, "Back-propagation learning and nonidealities in analog neural network hardware", IEEE Trans. Neural Networks 2 (1991) 110-117.
-
(1991)
IEEE Trans. Neural Networks
, vol.2
, pp. 110-117
-
-
Frye, R.1
Reitman, E.2
Wong, C.3
-
8
-
-
0024909727
-
An electrically trainable artificial neural network (ETANN) with 10,240 'floating gate' synapses
-
M. Holler, S. Tam, H. Castro, and R. Benson, "An electrically trainable artificial neural network (ETANN) with 10,240 'floating gate' synapses", in Proc. International Joint Conf. on Neural Networks, vol. 2, 1989, pp. 191-196.
-
(1989)
Proc. International Joint Conf. on Neural Networks
, vol.2
, pp. 191-196
-
-
Holler, M.1
Tam, S.2
Castro, H.3
Benson, R.4
-
9
-
-
0000726115
-
The effects of precision constraints in a back-propagation learning network
-
P. Hollis, J. Harper, and J. Paulos, "The effects of precision constraints in a back-propagation learning network", Neural Computation 2 (1990) 363-373.
-
(1990)
Neural Computation
, vol.2
, pp. 363-373
-
-
Hollis, P.1
Harper, J.2
Paulos, J.3
-
10
-
-
0345023260
-
Weight perturbation: An optimal architecture and learning technique for analog VLSI feedforward and recurrent multilayer networks
-
M. Jabri and B. Flower, "Weight perturbation: An optimal architecture and learning technique for analog VLSI feedforward and recurrent multilayer networks", Neural Computation 3, 4 (1991) 546-565.
-
(1991)
Neural Computation
, vol.3
, Issue.4
, pp. 546-565
-
-
Jabri, M.1
Flower, B.2
-
11
-
-
0026817590
-
CMOS self-biased Euclidean distance computing circuit with high dynamic range
-
O. Landolt et al., "CMOS self-biased Euclidean distance computing circuit with high dynamic range", Electronic Letters 28, 4 (1992).
-
(1992)
Electronic Letters
, vol.28
, Issue.4
-
-
Landolt, O.1
-
14
-
-
0000646059
-
Learning internal representations by error propagation
-
eds. D. Rumelhart and J. McClelland, Foundations, The MIT Press
-
D. Rumelhart, G. Hinton, and R. Williams, "Learning internal representations by error propagation", in Parallel Distributed Processing: Explorations in the Microstructure of Cognition, eds. D. Rumelhart and J. McClelland, vol. 1: Foundations, The MIT Press, 1986, pp. 318-362.
-
(1986)
Parallel Distributed Processing: Explorations in the Microstructure of Cognition
, vol.1
, pp. 318-362
-
-
Rumelhart, D.1
Hinton, G.2
Williams, R.3
-
15
-
-
0026727537
-
A reconfigurable VLSI neural network
-
S. Satyanarayana, Y. Tsividis, and H. Graf, "A reconfigurable VLSI neural network", IEEE J. of Solid-State Circuits 27, 1 (1992) 67-81.
-
(1992)
IEEE J. of Solid-State Circuits
, vol.27
, Issue.1
, pp. 67-81
-
-
Satyanarayana, S.1
Tsividis, Y.2
Graf, H.3
-
16
-
-
0028480967
-
Supervised and unsupervised learning in radial basis function classifiers
-
L. Tarassenko and S. Roberts, "Supervised and unsupervised learning in radial basis function classifiers", in IEE Proc. on Vision, Image and Signal Processing, vol. 141, 1994, pp. 210-216.
-
(1994)
IEE Proc. on Vision, Image and Signal Processing
, vol.141
, pp. 210-216
-
-
Tarassenko, L.1
Roberts, S.2
-
17
-
-
0027791531
-
On-chip learning with analogue VLSI neural networks
-
L. Tarassenko, J. Tombs, and G. Cairns, "On-chip learning with analogue VLSI neural networks", Int. J. Neural Systems 4, 4 (1993) 419-426.
-
(1993)
Int. J. Neural Systems
, vol.4
, Issue.4
, pp. 419-426
-
-
Tarassenko, L.1
Tombs, J.2
Cairns, G.3
-
18
-
-
0025488663
-
30 years of adaptive neural networks: Perceptron, madaline, and back-propagation
-
B. Widrow and M. Lehr, "30 years of adaptive neural networks: Perceptron, madaline, and back-propagation", Proc. IEEE 78, 9 (1990) 1415-1442.
-
(1990)
Proc. IEEE
, vol.78
, Issue.9
, pp. 1415-1442
-
-
Widrow, B.1
Lehr, M.2
|