-
1
-
-
0017417265
-
Convexity conditions and existence theorems in nonlinear elasticity
-
J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ratl. Mech. Analysis 63, 337-403, 1977.
-
(1977)
Arch. Ratl. Mech. Analysis
, vol.63
, pp. 337-403
-
-
Ball, J.M.1
-
2
-
-
0033411059
-
Variational formulation of softening phenomena in fracture mechanics: The one-dimensional case
-
A. Braides, G. Dal Maso, A. Garroni, Variational formulation of softening phenomena in fracture mechanics: The one-dimensional case, Arch. Ratl. Mech. Analysis 146, 23-58, 1999.
-
(1999)
Arch. Ratl. Mech. Analysis
, vol.146
, pp. 23-58
-
-
Braides, A.1
Dal Maso, G.2
Garroni, A.3
-
3
-
-
0003967609
-
-
Oxford University Press, New York
-
I. Catto, C. Le Bris, P.-L. Lions, The Mathematical Theory of Thermodynamic Limits: Thomas-Fermi Type Models, Oxford University Press, New York, 1998.
-
(1998)
The Mathematical Theory of Thermodynamic Limits: Thomas-Fermi Type Models
-
-
Catto, I.1
Le Bris, C.2
Lions, P.-L.3
-
5
-
-
0010184789
-
The thermodynamic limit for a crystal
-
C. Fefferman, The thermodynamic limit for a crystal, Commun. Math. Physics 98, 289-311, 1985.
-
(1985)
Commun. Math. Physics
, vol.98
, pp. 289-311
-
-
Fefferman, C.1
-
6
-
-
0033872514
-
A scheme for the passage from atomic to continuum theory for thin films, nanotubes and nanorods
-
G. Friesecke, R. D. James, A scheme for the passage from atomic to continuum theory for thin films, nanotubes and nanorods, J. Mech. Phys. Solids 48, 1519-1540, 2000.
-
(2000)
J. Mech. Phys. Solids
, vol.48
, pp. 1519-1540
-
-
Friesecke, G.1
James, R.D.2
-
8
-
-
0041581445
-
-
Ph.D. thesis, Scuola Internazionale Superiore die Studi Avanzati, Trieste
-
M. S. Gelli, Variational limits of discrete systems, Ph.D. thesis, Scuola Internazionale Superiore die Studi Avanzati, Trieste, 1999.
-
(1999)
Variational Limits of Discrete Systems
-
-
Gelli, M.S.1
-
9
-
-
0032338171
-
Finite difference approximation of the Mumford-Shah functional
-
M. Gobbino, Finite difference approximation of the Mumford-Shah functional, Commun. Pure Appl. Math. 51, 197-228, 1998.
-
(1998)
Commun. Pure Appl. Math.
, vol.51
, pp. 197-228
-
-
Gobbino, M.1
-
10
-
-
0021314789
-
Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity
-
R. Knops, C. A. Stuart, Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity, Arch. Ratl. Mech. Analysis 86, no. 3, 233-249, 1984.
-
(1984)
Arch. Ratl. Mech. Analysis
, vol.86
, Issue.3
, pp. 233-249
-
-
Knops, R.1
Stuart, C.A.2
-
11
-
-
33846040104
-
The Thomas-Fermi theory of atoms, molecules and solids
-
E. H. Lieb, B. Simon, The Thomas-Fermi theory of atoms, molecules and solids, Adv. Math. 23, 22-116.
-
Adv. Math.
, vol.23
, pp. 22-116
-
-
Lieb, E.H.1
Simon, B.2
-
12
-
-
84972497511
-
Quasi-convexity and the lower semicontinuity of multiple integrals
-
C. B. Morrey, Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math. 2, 25-53, 1952.
-
(1952)
Pacific J. Math.
, vol.2
, pp. 25-53
-
-
Morrey, C.B.1
-
13
-
-
0031628946
-
Simulated mesoscopic structures of a domain wall in a ferroelastic lattice
-
J. Novak, E. K. H. Salje, Simulated mesoscopic structures of a domain wall in a ferroelastic lattice, Eur. Phys. J. B 4, 279-284, 1998.
-
(1998)
Eur. Phys. J. B
, vol.4
, pp. 279-284
-
-
Novak, J.1
Salje, E.K.H.2
-
14
-
-
0041581443
-
A simple model for phase transitions: From the discrete to the continuum problem
-
S. Pagano, R. Paroni, A simple model for phase transitions: From the discrete to the continuum problem, to appear in Quart. Appl. Math., 2002.
-
(2002)
Quart. Appl. Math.
-
-
Pagano, S.1
Paroni, R.2
-
15
-
-
0002828126
-
Fracture as a phase transition
-
R. C. Batra and M. F. Beatty (eds.), CIMNE, Barcelona
-
L. Truskinovsky, Fracture as a phase transition, in R. C. Batra and M. F. Beatty (eds.), Contemporary Research in the Mechanics and Mathematics of Materials, CIMNE, Barcelona, 322-332, 1996.
-
(1996)
Contemporary Research in the Mechanics and Mathematics of Materials
, pp. 322-332
-
-
Truskinovsky, L.1
|