메뉴 건너뛰기




Volumn 55, Issue 9, 2003, Pages 1201-1215

Application of artificial neural networks in the design of controlled release drug delivery systems

Author keywords

Artificial neural network; Controlled release; Deconvolution; Design of experiment; Drug delivery systems; Fit factors; Formulation optimization; Response surface methodology

Indexed keywords

CONTROLLED DRUG DELIVERY; DRUG DOSAGE; MATHEMATICAL MODELS;

EID: 0042884376     PISSN: 0169409X     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0169-409X(03)00119-4     Document Type: Article
Times cited : (209)

References (42)
  • 1
    • 85031074480 scopus 로고    scopus 로고
    • USP 24, United States Pharmacopoeial Convention Inc., Rockville, MD
    • USP 24, The United States Pharmacopoeia, United States Pharmacopoeial Convention Inc., Rockville, MD, 2000, pp. 1628-1631.
    • (2000) The United States Pharmacopoeia , pp. 1628-1631
  • 2
    • 0025838017 scopus 로고
    • Application of neural computing in pharmaceutical product development
    • Hussain A.S., Yu X.Q., Johnson R.D. Application of neural computing in pharmaceutical product development. Pharm. Res. 8:1991;1248-1252.
    • (1991) Pharm. Res. , vol.8 , pp. 1248-1252
    • Hussain, A.S.1    Yu, X.Q.2    Johnson, R.D.3
  • 4
    • 0027326349 scopus 로고
    • Factorial design-based optimization of the formulation of isosorbide-5-mononitrate microcapsules
    • Farivar M., Kas H.S., Oner L., Hincal A.A. Factorial design-based optimization of the formulation of isosorbide-5-mononitrate microcapsules. J. Microencapsul. 10:1993;309-317.
    • (1993) J. Microencapsul. , vol.10 , pp. 309-317
    • Farivar, M.1    Kas, H.S.2    Oner, L.3    Hincal, A.A.4
  • 5
    • 0029971107 scopus 로고    scopus 로고
    • Preparation and evaluation of zidovudine-loaded sustained-release microspheres. 2. Optimization of multiple response variables
    • Abu-Izza K., Garcia-Contreras L., Lu D.R. Preparation and evaluation of zidovudine-loaded sustained-release microspheres. 2. Optimization of multiple response variables. J. Pharm. Sci. 85:1996;572-576.
    • (1996) J. Pharm. Sci. , vol.85 , pp. 572-576
    • Abu-Izza, K.1    Garcia-Contreras, L.2    Lu, D.R.3
  • 6
    • 0029986924 scopus 로고    scopus 로고
    • Response surface method: A novel strategy to optimize iontophoretic transdermal delivery of thyrotropin-releasing hormone
    • Huang Y.Y., Wu S.M., Wang C.Y. Response surface method: a novel strategy to optimize iontophoretic transdermal delivery of thyrotropin-releasing hormone. Pharm. Res. 13:1996;547-552.
    • (1996) Pharm. Res. , vol.13 , pp. 547-552
    • Huang, Y.Y.1    Wu, S.M.2    Wang, C.Y.3
  • 7
    • 0242666847 scopus 로고    scopus 로고
    • Response surface methods and other approaches to process optimization
    • New York: Wiley
    • Montgomery D.C. Response surface methods and other approaches to process optimization. Design and Analysis of Experiments. 2001;427-500 Wiley, New York.
    • (2001) Design and Analysis of Experiments , pp. 427-500
    • Montgomery, D.C.1
  • 8
    • 0031393965 scopus 로고    scopus 로고
    • Application of artificial neural networks (ANN) in the development of solid dosage forms
    • Bourquin J., Schmidli H., van Hoogevest P., Leuenberger H. Application of artificial neural networks (ANN) in the development of solid dosage forms. Pharm. Dev. Technol. 2:1997;111-121.
    • (1997) Pharm. Dev. Technol. , vol.2 , pp. 111-121
    • Bourquin, J.1    Schmidli, H.2    Van Hoogevest, P.3    Leuenberger, H.4
  • 9
    • 0034564603 scopus 로고    scopus 로고
    • Artificial neural networks: Fundamentals, computing, design, and application
    • Basheer I.A., Hajmeer M. Artificial neural networks: fundamentals, computing, design, and application. J. Microbiol. Methods. 43:2000;3-31.
    • (2000) J. Microbiol. Methods , vol.43 , pp. 3-31
    • Basheer, I.A.1    Hajmeer, M.2
  • 10
    • 85031075190 scopus 로고    scopus 로고
    • W.S. Sarle, ftp.sas.com/pub/neural/FAQ.html, 2002.
    • (2002)
    • Sarle, W.S.1
  • 11
    • 0031392564 scopus 로고    scopus 로고
    • Basic concepts of artificial neural networks (ANN) modeling in the application to pharmaceutical development
    • Bourquin J., Schmidli H., van Hoogevest P., Leuenberger H. Basic concepts of artificial neural networks (ANN) modeling in the application to pharmaceutical development. Pharm. Dev. Technol. 2:1997;95-109.
    • (1997) Pharm. Dev. Technol. , vol.2 , pp. 95-109
    • Bourquin, J.1    Schmidli, H.2    Van Hoogevest, P.3    Leuenberger, H.4
  • 13
    • 0033993938 scopus 로고    scopus 로고
    • Formulation optimization technique based on artificial neural network in salbutamol sulfate osmotic pump tablets
    • Wu T., Pan W., Chen J., Zhang R. Formulation optimization technique based on artificial neural network in salbutamol sulfate osmotic pump tablets. Drug Dev. Ind. Pharm. 26:2000;211-215.
    • (2000) Drug Dev. Ind. Pharm. , vol.26 , pp. 211-215
    • Wu, T.1    Pan, W.2    Chen, J.3    Zhang, R.4
  • 14
    • 0027396025 scopus 로고
    • Introduction to backpropagation neural network computation
    • Erb R.J. Introduction to backpropagation neural network computation. Pharm. Res. 10:1993;165-170.
    • (1993) Pharm. Res. , vol.10 , pp. 165-170
    • Erb, R.J.1
  • 16
    • 0030169551 scopus 로고    scopus 로고
    • Predicting moment-curvature parameters from experimental data
    • Jadid M.N., Fairbairn D.R. Predicting moment-curvature parameters from experimental data. Eng. Appl. Artif. Intell. 9:1996;303-319.
    • (1996) Eng. Appl. Artif. Intell. , vol.9 , pp. 303-319
    • Jadid, M.N.1    Fairbairn, D.R.2
  • 17
    • 0002954212 scopus 로고
    • Understanding neural network approximations and polynomial approximations helps neural network performance
    • Carpenter J.C., Hoffman M.E. Understanding neural network approximations and polynomial approximations helps neural network performance. AI Expert. 10:1995;31-33.
    • (1995) AI Expert , vol.10 , pp. 31-33
    • Carpenter, J.C.1    Hoffman, M.E.2
  • 20
    • 0027538427 scopus 로고
    • Backpropagation neural networks: A tutorial
    • Wythoff B.J. Backpropagation neural networks: a tutorial. Chemometr. Intell. Lab. Syst. 18:1993;115-155.
    • (1993) Chemometr. Intell. Lab. Syst. , vol.18 , pp. 115-155
    • Wythoff, B.J.1
  • 21
    • 0030760466 scopus 로고    scopus 로고
    • Multi-objective simultaneous optimization technique based on an artificial neural network in sustained release formulations
    • Takahara J., Takayama K., Nagai T. Multi-objective simultaneous optimization technique based on an artificial neural network in sustained release formulations. J. Control. Release. 49:1997;11-20.
    • (1997) J. Control. Release , vol.49 , pp. 11-20
    • Takahara, J.1    Takayama, K.2    Nagai, T.3
  • 22
    • 0032960016 scopus 로고    scopus 로고
    • Artificial neural networks applied to the in vitro-in vivo correlation of an extended-release formulation: Initial trials and experience
    • Dowell J.A., Hussain A., Devane J., Young D. Artificial neural networks applied to the in vitro-in vivo correlation of an extended-release formulation: initial trials and experience. J. Pharm. Sci. 88:1999;154-160.
    • (1999) J. Pharm. Sci. , vol.88 , pp. 154-160
    • Dowell, J.A.1    Hussain, A.2    Devane, J.3    Young, D.4
  • 23
    • 0032918303 scopus 로고    scopus 로고
    • The application of an artificial neural network and pharmacokinetic simulations in the design of controlled-release dosage forms
    • Chen Y., McCall T.W., Baichwal A.R., Meyer M.C. The application of an artificial neural network and pharmacokinetic simulations in the design of controlled-release dosage forms. J. Control. Release. 59:1999;33-41.
    • (1999) J. Control. Release , vol.59 , pp. 33-41
    • Chen, Y.1    McCall, T.W.2    Baichwal, A.R.3    Meyer, M.C.4
  • 24
    • 0016689286 scopus 로고
    • Application of the Loo-Riegelman absorption method
    • Wagner J.G. Application of the Loo-Riegelman absorption method. J. Pharmacokinet. Biopharm. 3:1975;51-67.
    • (1975) J. Pharmacokinet. Biopharm. , vol.3 , pp. 51-67
    • Wagner, J.G.1
  • 27
    • 2342652446 scopus 로고    scopus 로고
    • Mathematical Comparison of Dissolution Profiles
    • Moore J.W., Flanner H.H. Mathematical Comparison of Dissolution Profiles. Pharm. Technol. 20:1996;64-74.
    • (1996) Pharm. Technol. , vol.20 , pp. 64-74
    • Moore, J.W.1    Flanner, H.H.2
  • 28
    • 0041718204 scopus 로고    scopus 로고
    • Dissolution testing of immediate-release solid oral dosage forms
    • G.L. Amidon, J.R. Robinson, & R.L. Williams. Alexandria, VA: AAPS Press
    • Shah V.P. Dissolution testing of immediate-release solid oral dosage forms. Amidon G.L., Robinson J.R., Williams R.L. Scientific Foundation for Regulating Drug Product Quality. 1997;205-212 AAPS Press, Alexandria, VA.
    • (1997) Scientific Foundation for Regulating Drug Product Quality , pp. 205-212
    • Shah, V.P.1
  • 30
    • 0032875802 scopus 로고    scopus 로고
    • Formula optimization based on artificial neural networks in transdermal drug delivery
    • Takayama K., Takahara J., Fujikawa M., Ichikawa H., Nagai T. Formula optimization based on artificial neural networks in transdermal drug delivery. J. Control. Release. 62:1999;161-170.
    • (1999) J. Control. Release , vol.62 , pp. 161-170
    • Takayama, K.1    Takahara, J.2    Fujikawa, M.3    Ichikawa, H.4    Nagai, T.5
  • 31
    • 0037006605 scopus 로고    scopus 로고
    • Optimization and characterization of controlled release multi-particulate beads formulated with a customized cellulose acetate butyrate dispersion
    • Vaithiyalingam S., Khan M.A. Optimization and characterization of controlled release multi-particulate beads formulated with a customized cellulose acetate butyrate dispersion. Int. J. Pharm. 234:2002;179-193.
    • (2002) Int. J. Pharm. , vol.234 , pp. 179-193
    • Vaithiyalingam, S.1    Khan, M.A.2
  • 32
    • 0028365967 scopus 로고
    • Application of neural computing in pharmaceutical product development:computer aided formulation design
    • Hussain A.S., Shivanand P., Johnson R.D. Application of neural computing in pharmaceutical product development:computer aided formulation design. Drug Dev. Ind. Pharm. 20:1994;1739-1752.
    • (1994) Drug Dev. Ind. Pharm. , vol.20 , pp. 1739-1752
    • Hussain, A.S.1    Shivanand, P.2    Johnson, R.D.3
  • 33
    • 0001160588 scopus 로고
    • What size net gives valid generalization?
    • Baum E., Haussler D. What size net gives valid generalization? Neural Computation. 1:1989;151-160.
    • (1989) Neural Computation , vol.1 , pp. 151-160
    • Baum, E.1    Haussler, D.2
  • 35
    • 0030121244 scopus 로고    scopus 로고
    • Advances in feedforward neural networks: Demystifying knowledge acquiring black boxes
    • Looney C.G. Advances in feedforward neural networks: demystifying knowledge acquiring black boxes. IEEE Trans. Knowledge Data Eng. 8:1996;211-226.
    • (1996) IEEE Trans. Knowledge Data Eng. , vol.8 , pp. 211-226
    • Looney, C.G.1
  • 36
    • 0033954592 scopus 로고    scopus 로고
    • Preformulation studies and characterization of the physicochemical properties of amorphous polymers using artificial neural networks
    • Ebube N.K., Owusu-Ababio G., Adeyeye C.M. Preformulation studies and characterization of the physicochemical properties of amorphous polymers using artificial neural networks. Int. J. Pharm. 196:2000;27-35.
    • (2000) Int. J. Pharm. , vol.196 , pp. 27-35
    • Ebube, N.K.1    Owusu-Ababio, G.2    Adeyeye, C.M.3
  • 37
    • 0343924231 scopus 로고    scopus 로고
    • Optimization of diclofenac sodium dissolution from sustained release formulations using an artificial neural network
    • Zupancic Bozic D., Vrecer F., Kozjek F. Optimization of diclofenac sodium dissolution from sustained release formulations using an artificial neural network. Eur. J. Pharm. Sci. 5:1997;163-169.
    • (1997) Eur. J. Pharm. Sci. , vol.5 , pp. 163-169
    • Zupancic Bozic, D.1    Vrecer, F.2    Kozjek, F.3
  • 38
    • 0034632938 scopus 로고    scopus 로고
    • Formula optimization of theophylline controlled-release tablet based on artificial neural networks
    • Takayama K., Morva A., Fujikawa M., Hattori Y., Obata Y., Nagai T. Formula optimization of theophylline controlled-release tablet based on artificial neural networks. J. Control. Release. 68:2000;175-186.
    • (2000) J. Control. Release , vol.68 , pp. 175-186
    • Takayama, K.1    Morva, A.2    Fujikawa, M.3    Hattori, Y.4    Obata, Y.5    Nagai, T.6
  • 39
    • 0037151316 scopus 로고    scopus 로고
    • The application of generalized regression neural network in the modeling and optimization of aspirin extended release tablets with Eudragit((R)) RS PO as matrix substance
    • Ibric S., Jovanovic M., Djuric Z., Parojcic J., Solomun L. The application of generalized regression neural network in the modeling and optimization of aspirin extended release tablets with Eudragit((R)) RS PO as matrix substance. J. Control. Release. 82:2002;213-222.
    • (2002) J. Control. Release , vol.82 , pp. 213-222
    • Ibric, S.1    Jovanovic, M.2    Djuric, Z.3    Parojcic, J.4    Solomun, L.5
  • 40
    • 0021904208 scopus 로고
    • Analysis of Fickian and non-Fickian drug release from polymers
    • Peppas N.A. Analysis of Fickian and non-Fickian drug release from polymers. Pharm. Acta Helv. 60:1985;110-111.
    • (1985) Pharm. Acta Helv. , vol.60 , pp. 110-111
    • Peppas, N.A.1
  • 41
    • 0034495109 scopus 로고    scopus 로고
    • Use of artificial neural networks to predict drug dissolution profiles and evaluation of network performance using similarity factor
    • Peh K.K., Lim C.P., Quek S.S., Khoh K.H. Use of artificial neural networks to predict drug dissolution profiles and evaluation of network performance using similarity factor. Pharm. Res. 17:2000;1384-1388.
    • (2000) Pharm. Res. , vol.17 , pp. 1384-1388
    • Peh, K.K.1    Lim, C.P.2    Quek, S.S.3    Khoh, K.H.4
  • 42
    • 0033833098 scopus 로고    scopus 로고
    • Modelling of the solvent evaporation method for the preparation of controlled release acrylic microspheres using neural networks
    • Yuksel N., Turkoglu M., Baykara T. Modelling of the solvent evaporation method for the preparation of controlled release acrylic microspheres using neural networks. J. Microencapsul. 17:2000;541-551.
    • (2000) J. Microencapsul. , vol.17 , pp. 541-551
    • Yuksel, N.1    Turkoglu, M.2    Baykara, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.