메뉴 건너뛰기




Volumn 268, Issue 1-3, 1998, Pages 41-57

Local spectral radii and Collatz-Wielandt numbers of monic operator polynomials with nonnegative coefficients

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0042855310     PISSN: 00243795     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0024-3795(97)89323-8     Document Type: Article
Times cited : (7)

References (20)
  • 3
    • 0042057300 scopus 로고
    • The effect of the number of processors on the convergence rate to the parallel block Jacobi method
    • L. Elsner, M. Neumann, and B. Vernmer, The effect of the number of processors on the convergence rate to the parallel block Jacobi method, Linear Algebra Appl. 154-156:311-360 (1991).
    • (1991) Linear Algebra Appl. , vol.154-156 , pp. 311-360
    • Elsner, L.1    Neumann, M.2    Vernmer, B.3
  • 4
    • 0013468288 scopus 로고
    • On the local spectral theory of positive operators
    • Birkhäuser, Basel
    • K.-H. Förster and B. Nagy, On the local spectral theory of positive operators, in Oper. Theory Adv. Appl. 28, Birkhäuser, Basel, 1988, pp. 71-81.
    • (1988) Oper. Theory Adv. Appl. , vol.28 , pp. 71-81
    • Förster, K.-H.1    Nagy, B.2
  • 5
    • 0039643453 scopus 로고
    • On the Collatz-Wielandt numbers and the local spectral radius of a nonnegative operator
    • K.-H. Förster and B. Nagy, On the Collatz-Wielandt numbers and the local spectral radius of a nonnegative operator, Linear Algebra Appl. 120:193-205 (1989).
    • (1989) Linear Algebra Appl. , vol.120 , pp. 193-205
    • Förster, K.-H.1    Nagy, B.2
  • 6
    • 0039643454 scopus 로고
    • Some properties of the spectral radius of a monic operator polynomial with nonnegative compact coefficients
    • K.-H. Förster and B. Nagy, Some properties of the spectral radius of a monic operator polynomial with nonnegative compact coefficients, Integral Equations Operator Theory 14:794-805 (1991).
    • (1991) Integral Equations Operator Theory , vol.14 , pp. 794-805
    • Förster, K.-H.1    Nagy, B.2
  • 7
    • 0013535054 scopus 로고
    • On the local spectral radius of a nonnegative element with respect to an irreducible operator
    • K.-H. Förster and B. Nagy, On the local spectral radius of a nonnegative element with respect to an irreducible operator, Acta Sci. Math. 55:155-166 (1991).
    • (1991) Acta Sci. Math. , vol.55 , pp. 155-166
    • Förster, K.-H.1    Nagy, B.2
  • 10
    • 0042558171 scopus 로고
    • Eigenwerte von operatorpolynomen
    • K. P. Hadeler, Eigenwerte von Operatorpolynomen, Arch. Rational Mech. Appl. 20:72-80 (1965).
    • (1965) Arch. Rational Mech. Appl. , vol.20 , pp. 72-80
    • Hadeler, K.P.1
  • 11
    • 0042558168 scopus 로고
    • Variational spectral properties of nonnegative operator functions
    • B. A. Ivanov, Variational spectral properties of nonnegative operator functions (in Russian), Sibirsk. Mat. Zh. 26(5):86-93 (1985).
    • (1985) Sibirsk. Mat. Zh. , vol.26 , Issue.5 , pp. 86-93
    • Ivanov, B.A.1
  • 14
    • 0042057291 scopus 로고
    • On the polynomial eigenvalue problem with positive operators and location of the spectral radius
    • I. Marek, On the polynomial eigenvalue problem with positive operators and location of the spectral radius, Apl. Mat. 14:146-159 (1969).
    • (1969) Apl. Mat. , vol.14 , pp. 146-159
    • Marek, I.1
  • 15
    • 0039051224 scopus 로고
    • Collatz-Wielandt numbers in general partially ordered spaces
    • I. Marek, Collatz-Wielandt numbers in general partially ordered spaces, Linear Algebra Appl. 173:165-180 (1992).
    • (1992) Linear Algebra Appl. , vol.173 , pp. 165-180
    • Marek, I.1
  • 17
    • 0039347433 scopus 로고
    • Nested bounds for the spectral radius
    • I. Marek and R. S. Varga, Nested bounds for the spectral radius, Numer. Math. 14:49-70 (1970).
    • (1970) Numer. Math. , vol.14 , pp. 49-70
    • Marek, I.1    Varga, R.S.2
  • 18
    • 0042558167 scopus 로고
    • On the peripheral spectrum of a monic operator polynomial with positive coefficients
    • T. P. Rau, On the peripheral spectrum of a monic operator polynomial with positive coefficients, Integral Equations Operator Theory 15:479-495 (1992).
    • (1992) Integral Equations Operator Theory , vol.15 , pp. 479-495
    • Rau, T.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.