-
1
-
-
0042630613
-
A system of axiomatic set theory III
-
P. Bernays, A system of axiomatic set theory III, J. Symbolic Logic 7 (1942) 65-89.
-
(1942)
J. Symbolic Logic
, vol.7
, pp. 65-89
-
-
Bernays, P.1
-
2
-
-
0004068114
-
Unsolved Problems in Geometry
-
Springer, New York
-
H.T. Croft, K.J. Falconer, R.K. Guy, Unsolved Problems in Geometry, Springer, New York, 1991.
-
(1991)
-
-
Croft, H.T.1
Falconer, K.J.2
Guy, R.K.3
-
3
-
-
0001194434
-
A colour problem for infinite graphs and a problem in the theory of relations
-
P. Erdos, N.G. de Bruijn, A colour problem for infinite graphs and a problem in the theory of relations, Indag. Math. 13 (1951) 371-373.
-
(1951)
Indag. Math.
, vol.13
, pp. 371-373
-
-
Erdos, P.1
de Bruijn, N.G.2
-
5
-
-
0004294310
-
The Axiom of Choice
-
North-Holland, Amsterdam
-
T.J. Jech, The Axiom of Choice, North-Holland, Amsterdam, 1973.
-
(1973)
-
-
Jech, T.J.1
-
6
-
-
0003532728
-
Old and new Unsolved Problems in Plane Geometry and Number Theory
-
The Mathematical Association of America, Washington DC
-
V. Klee, S. Wagon, Old and new Unsolved Problems in Plane Geometry and Number Theory, The Mathematical Association of America, Washington DC, 1991.
-
(1991)
-
-
Klee, V.1
Wagon, S.2
-
7
-
-
0042630612
-
Chromatic number of the plane & its relatives. Part I: The problem & its history
-
A. Soifer, Chromatic number of the plane & its relatives. Part I: the problem & its history, Geombinatorics XII (3) (2003) 131-148.
-
(2003)
Geombinatorics
, vol.12
, Issue.3
, pp. 131-148
-
-
Soifer, A.1
-
8
-
-
0041628694
-
Chromatic number of the plane & its relatives. Part II: Polychromatic number & 6-coloring
-
A. Soifer, Chromatic number of the plane & its relatives. Part II: polychromatic number & 6-coloring, Geombinatorics XII (4) (2003) 191-216.
-
(2003)
Geombinatorics
, vol.12
, Issue.4
, pp. 191-216
-
-
Soifer, A.1
-
9
-
-
0040298496
-
Mathematical coloring book
-
CEME, Colorado Springs, to appear
-
A. Soifer, Mathematical coloring book, CEME, Colorado Springs, to appear.
-
-
-
Soifer, A.1
-
10
-
-
0002548418
-
A model of set theory in which every set of reals is Lebesgue measurable
-
R.M. Solovay, A model of set theory in which every set of reals is Lebesgue measurable, Ann. of Math. (Ser. 2) 92 (1970) 1-56.
-
(1970)
Ann. of Math. (Ser. 2)
, vol.92
, pp. 1-56
-
-
Solovay, R.M.1
-
11
-
-
0001104619
-
Reweis dass jede Menge wohlgeordnet warden kann
-
E. Zermelo, Reweis dass jede Menge wohlgeordnet warden kann, Math. Ann. 59 (1904) 514-516.
-
(1904)
Math. Ann.
, vol.59
, pp. 514-516
-
-
Zermelo, E.1
|