-
2
-
-
0035793878
-
-
(b) Luo, Z.; Zhang, Q.; Oderaotoshi, Y.; Curran, D. P. Science 2001, 291, 1766-1769.
-
(2001)
Science
, vol.291
, pp. 1766-1769
-
-
Luo, Z.1
Zhang, Q.2
Oderaotoshi, Y.3
Curran, D.P.4
-
3
-
-
0037019535
-
-
(b) Zhang, W.; Luo, Z.; Chen, C. H.-T.; Curran, D. P. J. Am. Chem. Soc. 2002, 124, 10 443-10 450.
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 10443-10450
-
-
Zhang, W.1
Luo, Z.2
Chen, C.H.-T.3
Curran, D.P.4
-
4
-
-
0037032214
-
-
(c) Ryu, I.; Matsubara, H.; Yasuda, S.; Nakamura, H.; Curran, D. P. J. Am. Chem. Soc. 2002, 124, 12 946-12 947.
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 12946-12947
-
-
Ryu, I.1
Matsubara, H.2
Yasuda, S.3
Nakamura, H.4
Curran, D.P.5
-
5
-
-
0001267533
-
-
(d) Luo, Z.; Swaleh, S. M.; Theil, F.; Curran, D. P. Org. Lett. 2002, 4, 2585-2587.
-
(2002)
Org. Lett.
, vol.4
, pp. 2585-2587
-
-
Luo, Z.1
Swaleh, S.M.2
Theil, F.3
Curran, D.P.4
-
10
-
-
0033481596
-
-
(e) de Wolf, E.; van Koten, G.; Deelman, B.-J. Chem. Soc. Rev. 1999, 28, 37-41.,
-
(1999)
Chem. Soc. Rev.
, vol.28
, pp. 37-41
-
-
De Wolf, E.1
Van Koten, G.2
Deelman, B.-J.3
-
13
-
-
0034716818
-
-
(a) Richter, B.; Spek, A. L.; van Koten, G.; Deelman, B.-J. J. Am. Chem. Soc. 2000, 122, 3945-3951.
-
(2000)
J. Am. Chem. Soc.
, vol.122
, pp. 3945-3951
-
-
Richter, B.1
Spek, A.L.2
Van Koten, G.3
Deelman, B.-J.4
-
14
-
-
0000992576
-
-
(b) Rutherford, D.; Jiliette, J. J. J.; Rocaboy, C.; Horváth, I. T.; Gladysz, J. A. Catal. Today 1998, 42, 381-388.
-
(1998)
Catal. Today
, vol.42
, pp. 381-388
-
-
Rutherford, D.1
Jiliette, J.J.J.2
Rocaboy, C.3
Horváth, I.T.4
Gladysz, J.A.5
-
15
-
-
0037174374
-
-
For several recent examples of reaction rate accelerations due to fluorous-induced, substrate phase preferences, see: (a) Pace, A.; Clennan, E. L. J. Am. Chem. Soc. 2002, 124, 11 236-11 237. (b) Morphy, J. R.; Rankovic, Z.; York, M. Tetrahedron Lett. 2001, 42, 7509-7511.
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 11236-11237
-
-
Pace, A.1
Clennan, E.L.2
-
16
-
-
0035888066
-
-
For several recent examples of reaction rate accelerations due to fluorous-induced, substrate phase preferences, see: (a) Pace, A.; Clennan, E. L. J. Am. Chem. Soc. 2002, 124, 11 236-11 237. (b) Morphy, J. R.; Rankovic, Z.; York, M. Tetrahedron Lett. 2001, 42, 7509-7511.
-
(2001)
Tetrahedron Lett.
, vol.42
, pp. 7509-7511
-
-
Morphy, J.R.1
Rankovic, Z.2
York, M.3
-
17
-
-
0034614050
-
-
For a rate acceleration in fluorous media ascribed to differential solvation in the transition state of the Diels-Alder reaction, see: Myers, K. E.; Kumar, K. J. Am. Chem. Soc. 2000, 122, 12 025-12 026.
-
(2000)
J. Am. Chem. Soc.
, vol.122
, pp. 12025-12026
-
-
Myers, K.E.1
Kumar, K.2
-
18
-
-
0031213433
-
-
Quaternized polymer latexes can significantly accelerate reaction rates by both partition induced concentration enhancements and intrinsic rate constant increases, see: Ford, W. T. React. Funct. Polymers 1997, 33, 147-158.
-
(1997)
React. Funct. Polymers
, vol.33
, pp. 147-158
-
-
Ford, W.T.1
-
19
-
-
0343618500
-
-
De Vos has quantified the effect of substrate partitioning from dilute solutions (chromatographically) into zeolites and correlated these effects to the catalytic reactivity of the zeolite. See, for example: Langhendries, G.; Vos, D. E. D.; Baron, G. V.; Jacobs, P. A. J. Catalysis 1999, 187, 453-463.
-
(1999)
J. Catalysis
, vol.187
, pp. 453-463
-
-
Langhendries, G.1
Vos, D.E.D.2
Baron, G.V.3
Jacobs, P.A.4
-
20
-
-
28244472082
-
-
Micelles will also partition organics from aqueous solutions with consequent increases or decreases in chemical reactivity. For classic examples of rate enhancements, see for example: (a) Menger, F. M.; Portnoy, C. E. J. Am. Chem. Soc. 1967, 89, 4698-4703. (b) Yatsimirski, A. K.; Martinek, K.; Berezin, I. V. Tetrahedron 1971, 27, 2855-2868. (c) Romsted, L. S.; Bunton, C. A.; Yao, J. Curr. Opin. Colloid Interface Sci. 1997, 2, 622-628. For a recent example where rate acceleration and decelerations result, see: Davies, D. M.; Stringer, E. L. Langmuir 2003, 19, 1927-1928.
-
(1967)
J. Am. Chem. Soc.
, vol.89
, pp. 4698-4703
-
-
Menger, F.M.1
Portnoy, C.E.2
-
21
-
-
0001204931
-
-
Micelles will also partition organics from aqueous solutions with consequent increases or decreases in chemical reactivity. For classic examples of rate enhancements, see for example: (a) Menger, F. M.; Portnoy, C. E. J. Am. Chem. Soc. 1967, 89, 4698-4703. (b) Yatsimirski, A. K.; Martinek, K.; Berezin, I. V. Tetrahedron 1971, 27, 2855-2868. (c) Romsted, L. S.; Bunton, C. A.; Yao, J. Curr. Opin. Colloid Interface Sci. 1997, 2, 622-628. For a recent example where rate acceleration and decelerations result, see: Davies, D. M.; Stringer, E. L. Langmuir 2003, 19, 1927-1928.
-
(1971)
Tetrahedron
, vol.27
, pp. 2855-2868
-
-
Yatsimirski, A.K.1
Martinek, K.2
Berezin, I.V.3
-
22
-
-
0001641086
-
-
Micelles will also partition organics from aqueous solutions with consequent increases or decreases in chemical reactivity. For classic examples of rate enhancements, see for example: (a) Menger, F. M.; Portnoy, C. E. J. Am. Chem. Soc. 1967, 89, 4698-4703. (b) Yatsimirski, A. K.; Martinek, K.; Berezin, I. V. Tetrahedron 1971, 27, 2855-2868. (c) Romsted, L. S.; Bunton, C. A.; Yao, J. Curr. Opin. Colloid Interface Sci. 1997, 2, 622-628. For a recent example where rate acceleration and decelerations result, see: Davies, D. M.; Stringer, E. L. Langmuir 2003, 19, 1927-1928.
-
(1997)
Curr. Opin. Colloid Interface Sci.
, vol.2
, pp. 622-628
-
-
Romsted, L.S.1
Bunton, C.A.2
Yao, J.3
-
23
-
-
0037453649
-
-
Micelles will also partition organics from aqueous solutions with consequent increases or decreases in chemical reactivity. For classic examples of rate enhancements, see for example: (a) Menger, F. M.; Portnoy, C. E. J. Am. Chem. Soc. 1967, 89, 4698-4703. (b) Yatsimirski, A. K.; Martinek, K.; Berezin, I. V. Tetrahedron 1971, 27, 2855-2868. (c) Romsted, L. S.; Bunton, C. A.; Yao, J. Curr. Opin. Colloid Interface Sci. 1997, 2, 622-628. For a recent example where rate acceleration and decelerations result, see: Davies, D. M.; Stringer, E. L. Langmuir 2003, 19, 1927-1928.
-
(2003)
Langmuir
, vol.19
, pp. 1927-1928
-
-
Davies, D.M.1
Stringer, E.L.2
-
26
-
-
0022811148
-
-
(a) Hradil, J.; Wojaczynska, M.; Svec, F.; Kolarz, B. N. Reactive Polymers 1986, 4, 277-283.
-
(1986)
Reactive Polymers
, vol.4
, pp. 277-283
-
-
Hradil, J.1
Wojaczynska, M.2
Svec, F.3
Kolarz, B.N.4
-
27
-
-
0031209539
-
-
(b) Podlesnyuk, V. V.; Hradil, J.; Marutovskii, R. M.; Klimenko, N. A.; Fridman, L. E. React. Funct. Polymers 1997, 33, 275-288.
-
(1997)
React. Funct. Polymers
, vol.33
, pp. 275-288
-
-
Podlesnyuk, V.V.1
Hradil, J.2
Marutovskii, R.M.3
Klimenko, N.A.4
Fridman, L.E.5
-
28
-
-
0042538787
-
-
note
-
These effects are well documented in sorption studies from aqueous solutions, see for example footnote 11a.
-
-
-
-
30
-
-
84992610556
-
-
For classic papers in this area see, for example: (a) Kunin, R.; Meitzner, E.; Bortnick, N. J. Am. Chem. Soc. 1962, 84, 305-306. (b) Kun, K. A.; Kunin, R. Polymer Lett. 1964, 2, 587-591. (c) Millar, J. R.; Smith, D. G.; Marr, W. E.; Kressman, T. R. E. J. Chem. Soc. 1963, 218-225.
-
(1962)
J. Am. Chem. Soc.
, vol.84
, pp. 305-306
-
-
Kunin, R.1
Meitzner, E.2
Bortnick, N.3
-
31
-
-
84992610556
-
-
For classic papers in this area see, for example: (a) Kunin, R.; Meitzner, E.; Bortnick, N. J. Am. Chem. Soc. 1962, 84, 305-306. (b) Kun, K. A.; Kunin, R. Polymer Lett. 1964, 2, 587-591. (c) Millar, J. R.; Smith, D. G.; Marr, W. E.; Kressman, T. R. E. J. Chem. Soc. 1963, 218-225.
-
(1964)
Polymer Lett.
, vol.2
, pp. 587-591
-
-
Kun, K.A.1
Kunin, R.2
-
32
-
-
26944463696
-
-
For classic papers in this area see, for example: (a) Kunin, R.; Meitzner, E.; Bortnick, N. J. Am. Chem. Soc. 1962, 84, 305-306. (b) Kun, K. A.; Kunin, R. Polymer Lett. 1964, 2, 587-591. (c) Millar, J. R.; Smith, D. G.; Marr, W. E.; Kressman, T. R. E. J. Chem. Soc. 1963, 218-225.
-
(1963)
J. Chem. Soc.
, pp. 218-225
-
-
Millar, J.R.1
Smith, D.G.2
Marr, W.E.3
Kressman, T.R.E.4
-
33
-
-
0035111730
-
-
(a) Santora, B. P.; Gagné, M. R.; Moloy, K. G.; Radu, N. S. Macromolecules 2001, 34, 658-661.
-
(2001)
Macromolecules
, vol.34
, pp. 658-661
-
-
Santora, B.P.1
Gagné, M.R.2
Moloy, K.G.3
Radu, N.S.4
-
35
-
-
0041536735
-
-
note
-
This size range proved most convenient for UV-vis studies because interference with the light path was low.
-
-
-
-
36
-
-
0000653495
-
-
For recent references on the effect of cross-link density on surface area see: (a) Sellergren, B. Makromol. Chem. 1989, 190, 2703. For poly-(divinylbenzene) polymers (c) Law, R. V.; Sherrington, D. C.; Snape, C. E. Macromolecules 1997, 30, 2868. (d) Xie, S.; Svec, F.; Fréchet, J. M. J. Chem. Mater. 1998, 10, 4072-4078. For multifunctional methacrylate polymers (e) Rohr, T.; Knaus, S.; Gruber, H.; Sherrington, D. C. Macromolecules 2002, 35, 97, (f) Steinke, J. H. G.; Dunkin, I. R.; Sherrington, D. C. Macromolecules 1996, 29, 5826.
-
(1989)
Makromol. Chem.
, vol.190
, pp. 2703
-
-
Sellergren, B.1
-
37
-
-
0031145803
-
-
For recent references on the effect of cross-link density on surface area see: (a) Sellergren, B. Makromol. Chem. 1989, 190, 2703. For poly-(divinylbenzene) polymers (c) Law, R. V.; Sherrington, D. C.; Snape, C. E. Macromolecules 1997, 30, 2868. (d) Xie, S.; Svec, F.; Fréchet, J. M. J. Chem. Mater. 1998, 10, 4072-4078. For multifunctional methacrylate polymers (e) Rohr, T.; Knaus, S.; Gruber, H.; Sherrington, D. C. Macromolecules 2002, 35, 97, (f) Steinke, J. H. G.; Dunkin, I. R.; Sherrington, D. C. Macromolecules 1996, 29, 5826.
-
(1997)
Macromolecules
, vol.30
, pp. 2868
-
-
Law, R.V.1
Sherrington, D.C.2
Snape, C.E.3
-
38
-
-
0001300975
-
-
For recent references on the effect of cross-link density on surface area see: (a) Sellergren, B. Makromol. Chem. 1989, 190, 2703. For poly-(divinylbenzene) polymers (c) Law, R. V.; Sherrington, D. C.; Snape, C. E. Macromolecules 1997, 30, 2868. (d) Xie, S.; Svec, F.; Fréchet, J. M. J. Chem. Mater. 1998, 10, 4072-4078. For multifunctional methacrylate polymers (e) Rohr, T.; Knaus, S.; Gruber, H.; Sherrington, D. C. Macromolecules 2002, 35, 97, (f) Steinke, J. H. G.; Dunkin, I. R.; Sherrington, D. C. Macromolecules 1996, 29, 5826.
-
(1998)
Chem. Mater.
, vol.10
, pp. 4072-4078
-
-
Xie, S.1
Svec, F.2
Fréchet, J.M.J.3
-
39
-
-
0036143763
-
-
For recent references on the effect of cross-link density on surface area see: (a) Sellergren, B. Makromol. Chem. 1989, 190, 2703. For poly-(divinylbenzene) polymers (c) Law, R. V.; Sherrington, D. C.; Snape, C. E. Macromolecules 1997, 30, 2868. (d) Xie, S.; Svec, F.; Fréchet, J. M. J. Chem. Mater. 1998, 10, 4072-4078. For multifunctional methacrylate polymers (e) Rohr, T.; Knaus, S.; Gruber, H.; Sherrington, D. C. Macromolecules 2002, 35, 97, (f) Steinke, J. H. G.; Dunkin, I. R.; Sherrington, D. C. Macromolecules 1996, 29, 5826.
-
(2002)
Macromolecules
, vol.35
, pp. 97
-
-
Rohr, T.1
Knaus, S.2
Gruber, H.3
Sherrington, D.C.4
-
40
-
-
0030213828
-
-
For recent references on the effect of cross-link density on surface area see: (a) Sellergren, B. Makromol. Chem. 1989, 190, 2703. For poly-(divinylbenzene) polymers (c) Law, R. V.; Sherrington, D. C.; Snape, C. E. Macromolecules 1997, 30, 2868. (d) Xie, S.; Svec, F.; Fréchet, J. M. J. Chem. Mater. 1998, 10, 4072-4078. For multifunctional methacrylate polymers (e) Rohr, T.; Knaus, S.; Gruber, H.; Sherrington, D. C. Macromolecules 2002, 35, 97, (f) Steinke, J. H. G.; Dunkin, I. R.; Sherrington, D. C. Macromolecules 1996, 29, 5826.
-
(1996)
Macromolecules
, vol.29
, pp. 5826
-
-
Steinke, J.H.G.1
Dunkin, I.R.2
Sherrington, D.C.3
-
41
-
-
0043039569
-
-
note
-
In the absence of substrate, this mixture misces at 89 °C, 104 °C if the mixture is 0.25 M in methyl trans-cinnamate.
-
-
-
-
42
-
-
0000140908
-
-
2 where increasing pressure (increasing solvency) decreases the partitioning of small molecules into cross-linked siloxane polymers, see: Brantley, N. H.; Bush, D.; Kazarian, S. G.; Eckert, C. A. J. Phys. Chem. B 1999, 103, 10007-10016.
-
(1999)
J. Phys. Chem. B
, vol.103
, pp. 10007-10016
-
-
Brantley, N.H.1
Bush, D.2
Kazarian, S.G.3
Eckert, C.A.4
-
43
-
-
0014574317
-
-
Paleos documented this phenomenon 30 years ago, see: Paleos, J. J. Colloid Interface Sci. 1969, 31, 7-18.
-
(1969)
J. Colloid Interface Sci.
, vol.31
, pp. 7-18
-
-
Paleos, J.1
-
44
-
-
0004165224
-
-
Harper & Row, New York
-
Laidler, K. J. Chemical Kinetics, 3rd ed.; Harper & Row: New York, 1987. For a similar approach to modeling the kinetics of uptake of organic compounds from aqueous solutions into polyacrylate coated silica fibers, see: Vaes, W. H. J.; Hamwijk, C.; Errestarazu Ramos, E.; Verhaar, H. J. M.; Hermens, J. L. M. Anal. Chem. 1996, 68, 4458-4462.
-
(1987)
Chemical Kinetics, 3rd Ed.
-
-
Laidler, K.J.1
-
45
-
-
0030416509
-
-
Laidler, K. J. Chemical Kinetics, 3rd ed.; Harper & Row: New York, 1987. For a similar approach to modeling the kinetics of uptake of organic compounds from aqueous solutions into polyacrylate coated silica fibers, see: Vaes, W. H. J.; Hamwijk, C.; Errestarazu Ramos, E.; Verhaar, H. J. M.; Hermens, J. L. M. Anal. Chem. 1996, 68, 4458-4462.
-
(1996)
Anal. Chem.
, vol.68
, pp. 4458-4462
-
-
Vaes, W.H.J.1
Hamwijk, C.2
Ramos, E.E.3
Verhaar, H.J.M.4
Hermens, J.L.M.5
-
46
-
-
0026202810
-
-
Several more sophisticated approaches to modeling analyte uptake have been used to separate diffusion into macro-, micro-, and bulk polymer diffusion phases. See, for example: (a) Hradil, J.; Svec, F.; Podlesnyuk, V. V.; Marutovskij, R. M.; Friedman, L. E.; Klimenko, N. A. Ind. Eng. Chem. Res. 1991, 30, 1926-931. (b) Wang, C.; Xu, M.; Shi, Z.; Fan, Y.; Ji, C. Chinese J. React. Polym. 2000, 9, 81-89.
-
(1991)
Ind. Eng. Chem. Res.
, vol.30
, pp. 1926-1931
-
-
Hradil, J.1
Svec, F.2
Podlesnyuk, V.V.3
Marutovskij, R.M.4
Friedman, L.E.5
Klimenko, N.A.6
-
47
-
-
0026202810
-
-
Several more sophisticated approaches to modeling analyte uptake have been used to separate diffusion into macro-, micro-, and bulk polymer diffusion phases. See, for example: (a) Hradil, J.; Svec, F.; Podlesnyuk, V. V.; Marutovskij, R. M.; Friedman, L. E.; Klimenko, N. A. Ind. Eng. Chem. Res. 1991, 30, 1926-931. (b) Wang, C.; Xu, M.; Shi, Z.; Fan, Y.; Ji, C. Chinese J. React. Polym. 2000, 9, 81-89.
-
(2000)
Chinese J. React. Polym.
, vol.9
, pp. 81-89
-
-
Wang, C.1
Xu, M.2
Shi, Z.3
Fan, Y.4
Ji, C.5
-
49
-
-
0035208872
-
-
For measurements of particle and skeletal densities of macroporous polymers, see: Vlad, C. D.; Milhailescu, S. Eur. Polym. J. 2001, 37, 71-77.
-
(2001)
Eur. Polym. J.
, vol.37
, pp. 71-77
-
-
Vlad, C.D.1
Milhailescu, S.2
-
50
-
-
0041536732
-
-
note
-
Functional group like amines have been observed to enhance the partitioning of phenols from aqueous solutions into EDMA-type materials, see for example footnotes 11b and 12.
-
-
-
-
51
-
-
0035912998
-
-
and footnote 18d
-
A reviewer correctly pointed out that monomer reactivity ratio differences might not necessarily lead to interior surface functionalizations that are identical to the feed ratios. For several recent examples of derivatizing the interior surface of a porous monolithic polymer through a functional comonomer, see: Viklund, C.; Nordström, A.; Irgum, K.; Svec, F.; Fréchet, J. M. J. Macromolecules 2001, 34, 4361-4369, and footnote 18d.
-
(2001)
Macromolecules
, vol.34
, pp. 4361-4369
-
-
Viklund, C.1
Nordström, A.2
Irgum, K.3
Svec, F.4
Fréchet, J.M.J.5
-
52
-
-
0035929950
-
-
Wende, M.; Meier, R.; Gladysz, J. A. J. Am. Chem. Soc. 2001, 123, 11 490-11 491.
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 11490-11491
-
-
Wende, M.1
Meier, R.2
Gladysz, J.A.3
-
53
-
-
0037241661
-
-
This effect is also the basis of thermomorphic catalysts, which are soluble at high temperatures and then phase separate upon cooling For fluoro-based methodologies, see: (a) Rocaboy, C.; Gladysz, J. A. New J. Chem. 2003, 27, 39-49. (b) Rocaboy, C.; Gladysz, J. A. Org. Lett. 2002, 4, 1993-1996. For examples of this approach in nonfluorous systems, see: (c) Bergbreiter, D. E. Chem. Rev. 2002, 102, 3345-3384. (d) Bergbreiter, D. E.; Osburn, P. L.; Frels, J. D. J. Am. Chem. Soc. 2001, 123, 11 105-11 106. (e) Bergbreiter, D. E.; Osburn, P. L.; Wilson, A.; Sink, E. M. J. Am. Chem. Soc. 2000, 122, 9058-9064. (f) Bergbreiter, D. E.; Liu, Y.-S.; Osborn, P. L. J. Am. Chem. Soc. 1998, 120, 4250-4251.
-
(2003)
New J. Chem.
, vol.27
, pp. 39-49
-
-
Rocaboy, C.1
Gladysz, J.A.2
-
54
-
-
0001489150
-
-
This effect is also the basis of thermomorphic catalysts, which are soluble at high temperatures and then phase separate upon cooling For fluoro-based methodologies, see: (a) Rocaboy, C.; Gladysz, J. A. New J. Chem. 2003, 27, 39-49. (b) Rocaboy, C.; Gladysz, J. A. Org. Lett. 2002, 4, 1993-1996. For examples of this approach in nonfluorous systems, see: (c) Bergbreiter, D. E. Chem. Rev. 2002, 102, 3345-3384. (d) Bergbreiter, D. E.; Osburn, P. L.; Frels, J. D. J. Am. Chem. Soc. 2001, 123, 11 105-11 106. (e) Bergbreiter, D. E.; Osburn, P. L.; Wilson, A.; Sink, E. M. J. Am. Chem. Soc. 2000, 122, 9058-9064. (f) Bergbreiter, D. E.; Liu, Y.-S.; Osborn, P. L. J. Am. Chem. Soc. 1998, 120, 4250-4251.
-
(2002)
Org. Lett.
, vol.4
, pp. 1993-1996
-
-
Rocaboy, C.1
Gladysz, J.A.2
-
55
-
-
0036811241
-
-
This effect is also the basis of thermomorphic catalysts, which are soluble at high temperatures and then phase separate upon cooling For fluoro-based methodologies, see: (a) Rocaboy, C.; Gladysz, J. A. New J. Chem. 2003, 27, 39-49. (b) Rocaboy, C.; Gladysz, J. A. Org. Lett. 2002, 4, 1993-1996. For examples of this approach in nonfluorous systems, see: (c) Bergbreiter, D. E. Chem. Rev. 2002, 102, 3345-3384. (d) Bergbreiter, D. E.; Osburn, P. L.; Frels, J. D. J. Am. Chem. Soc. 2001, 123, 11 105-11 106. (e) Bergbreiter, D. E.; Osburn, P. L.; Wilson, A.; Sink, E. M. J. Am. Chem. Soc. 2000, 122, 9058-9064. (f) Bergbreiter, D. E.; Liu, Y.-S.; Osborn, P. L. J. Am. Chem. Soc. 1998, 120, 4250-4251.
-
(2002)
Chem. Rev.
, vol.102
, pp. 3345-3384
-
-
Bergbreiter, D.E.1
-
56
-
-
0035823951
-
-
This effect is also the basis of thermomorphic catalysts, which are soluble at high temperatures and then phase separate upon cooling For fluoro-based methodologies, see: (a) Rocaboy, C.; Gladysz, J. A. New J. Chem. 2003, 27, 39-49. (b) Rocaboy, C.; Gladysz, J. A. Org. Lett. 2002, 4, 1993-1996. For examples of this approach in nonfluorous systems, see: (c) Bergbreiter, D. E. Chem. Rev. 2002, 102, 3345-3384. (d) Bergbreiter, D. E.; Osburn, P. L.; Frels, J. D. J. Am. Chem. Soc. 2001, 123, 11 105-11 106. (e) Bergbreiter, D. E.; Osburn, P. L.; Wilson, A.; Sink, E. M. J. Am. Chem. Soc. 2000, 122, 9058-9064. (f) Bergbreiter, D. E.; Liu, Y.-S.; Osborn, P. L. J. Am. Chem. Soc. 1998, 120, 4250-4251.
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 11105-11106
-
-
Bergbreiter, D.E.1
Osburn, P.L.2
Frels, J.D.3
-
57
-
-
0034721443
-
-
This effect is also the basis of thermomorphic catalysts, which are soluble at high temperatures and then phase separate upon cooling For fluoro-based methodologies, see: (a) Rocaboy, C.; Gladysz, J. A. New J. Chem. 2003, 27, 39-49. (b) Rocaboy, C.; Gladysz, J. A. Org. Lett. 2002, 4, 1993-1996. For examples of this approach in nonfluorous systems, see: (c) Bergbreiter, D. E. Chem. Rev. 2002, 102, 3345-3384. (d) Bergbreiter, D. E.; Osburn, P. L.; Frels, J. D. J. Am. Chem. Soc. 2001, 123, 11 105-11 106. (e) Bergbreiter, D. E.; Osburn, P. L.; Wilson, A.; Sink, E. M. J. Am. Chem. Soc. 2000, 122, 9058-9064. (f) Bergbreiter, D. E.; Liu, Y.-S.; Osborn, P. L. J. Am. Chem. Soc. 1998, 120, 4250-4251.
-
(2000)
J. Am. Chem. Soc.
, vol.122
, pp. 9058-9064
-
-
Bergbreiter, D.E.1
Osburn, P.L.2
Wilson, A.3
Sink, E.M.4
-
58
-
-
0000077126
-
-
This effect is also the basis of thermomorphic catalysts, which are soluble at high temperatures and then phase separate upon cooling For fluoro-based methodologies, see: (a) Rocaboy, C.; Gladysz, J. A. New J. Chem. 2003, 27, 39-49. (b) Rocaboy, C.; Gladysz, J. A. Org. Lett. 2002, 4, 1993-1996. For examples of this approach in nonfluorous systems, see: (c) Bergbreiter, D. E. Chem. Rev. 2002, 102, 3345-3384. (d) Bergbreiter, D. E.; Osburn, P. L.; Frels, J. D. J. Am. Chem. Soc. 2001, 123, 11 105-11 106. (e) Bergbreiter, D. E.; Osburn, P. L.; Wilson, A.; Sink, E. M. J. Am. Chem. Soc. 2000, 122, 9058-9064. (f) Bergbreiter, D. E.; Liu, Y.-S.; Osborn, P. L. J. Am. Chem. Soc. 1998, 120, 4250-4251.
-
(1998)
J. Am. Chem. Soc.
, vol.120
, pp. 4250-4251
-
-
Bergbreiter, D.E.1
Liu, Y.-S.2
Osborn, P.L.3
-
59
-
-
0042538786
-
-
note
-
At high concentrations of 1 (> 1.0 mM) the partitioning is insensitive to temperature (∼850/o for 26-46 °C, and ∼83% for 51-66 °C. Sorption thermodynamics have been analyzed by both Frendlich and Langmuir isotherm models, see for example footnote 11.
-
-
-
-
60
-
-
0000163061
-
-
See, for example: (a) Peters, E. C.; Svec, F.; Fréchet, J. M. J. Adv. Mater. 1999, 11, 1169-1181.
-
(1999)
Adv. Mater.
, vol.11
, pp. 1169-1181
-
-
Peters, E.C.1
Svec, F.2
Fréchet, J.M.J.3
-
62
-
-
0041536668
-
-
note
-
The filling of the pores with solvent is accompanied by a rapid displacement of the air (seconds) in the interior pores, which is accompanied by the liberation of small air bubbles.
-
-
-
|