메뉴 건너뛰기




Volumn 14, Issue 1, 2001, Pages 213-239

Small Deviations for Some Multi-Parameter Gaussian Processes

Author keywords

Exceptional set; Fractional Brownian sheet; Gaussian random field; Hausdorff dimension; Random fractal; Small ball probability

Indexed keywords


EID: 0042786029     PISSN: 08949840     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1007833401562     Document Type: Article
Times cited : (36)

References (25)
  • 2
    • 84968476146 scopus 로고
    • The integral of symmetric unimodular functions over a symmetric convex set and some probability inequalities
    • Anderson, T. W. (1955). The integral of symmetric unimodular functions over a symmetric convex set and some probability inequalities. Proc. Amer. Math. Soc. 6, 170-176.
    • (1955) Proc. Amer. Math. Soc. , vol.6 , pp. 170-176
    • Anderson, T.W.1
  • 3
    • 0000751116 scopus 로고
    • On the fractal nature of empirical increments
    • Deheuvels, P., and Mason, D. M. (1994). On the fractal nature of empirical increments. Ann. Probab. 23, 355-387.
    • (1994) Ann. Probab. , vol.23 , pp. 355-387
    • Deheuvels, P.1    Mason, D.M.2
  • 4
    • 0002059563 scopus 로고    scopus 로고
    • Random fractal functional laws of the iterated logarithm
    • Deheuvels, P., and Mason, D. M. (1998). Random fractal functional laws of the iterated logarithm. Studia Sci. Math. Hungar. 34, 89-106.
    • (1998) Studia Sci. Math. Hungar. , vol.34 , pp. 89-106
    • Deheuvels, P.1    Mason, D.M.2
  • 5
    • 0034563536 scopus 로고    scopus 로고
    • Estimates for the small probabilities of the fractional Brownian sheet
    • Dunker, T. (2000). Estimates for the small probabilities of the fractional Brownian sheet. J. Theor. Probab. 13, 357-382.
    • (2000) J. Theor. Probab. , vol.13 , pp. 357-382
    • Dunker, T.1
  • 6
    • 0031996159 scopus 로고    scopus 로고
    • Metric entropy of the integration operator and small ball probabilities for the Brownian sheet
    • Dunker, T., Kühn, T., Lifshits, M. A., and Linde, W. (1998). Metric entropy of the integration operator and small ball probabilities for the Brownian sheet. C. R. Acad. Sci. Paris Série I 326, 347-352.
    • (1998) C. R. Acad. Sci. Paris Série I , vol.326 , pp. 347-352
    • Dunker, T.1    Kühn, T.2    Lifshits, M.A.3    Linde, W.4
  • 8
    • 0001259104 scopus 로고
    • On certain inequalities for normal distributions and their applications to simultaneous confidence bounds
    • Khatri, C. G. (1967). On certain inequalities for normal distributions and their applications to simultaneous confidence bounds. Ann. Math. Statist. 38, 1853-1867.
    • (1967) Ann. Math. Statist. , vol.38 , pp. 1853-1867
    • Khatri, C.G.1
  • 9
    • 0001461506 scopus 로고
    • Metric entropy and the small ball problem for Gaussian measures
    • Kuelbs, J., and Li, W. V. (1993). Metric entropy and the small ball problem for Gaussian measures. J. Funct. Anal. 116, 133-157.
    • (1993) J. Funct. Anal. , vol.116 , pp. 133-157
    • Kuelbs, J.1    Li, W.V.2
  • 10
    • 0000946488 scopus 로고
    • Small ball estimates for Brownian motion and Brownian sheet
    • Kuelbs, J., and Li, W.V. (1993). Small ball estimates for Brownian motion and Brownian sheet. J. Theoret. Probab. 6, 547-577.
    • (1993) J. Theoret. Probab. , vol.6 , pp. 547-577
    • Kuelbs, J.1    Li, W.V.2
  • 11
    • 0000639280 scopus 로고    scopus 로고
    • Isoperimetry and Gaussian analysis
    • Lecture Notes in Mathematics Springer, Berlin
    • Ledoux, M. (1996). Isoperimetry and Gaussian analysis. In École d'Été de Saint-Flour XXIV. Lecture Notes in Mathematics, Vol. 1648, pp. 165-294, Springer, Berlin.
    • (1996) École D'Été de Saint-Flour XXIV , vol.1648 , pp. 165-294
    • Ledoux, M.1
  • 13
    • 0032092875 scopus 로고    scopus 로고
    • Existence of small ball constants for fractional Brownian motions
    • Li, W. V., and Linde, W. (1998). Existence of small ball constants for fractional Brownian motions. C. R. Acad. Sci. Paris Sér. I 326, 1329-1334.
    • (1998) C. R. Acad. Sci. Paris Sér. I , vol.326 , pp. 1329-1334
    • Li, W.V.1    Linde, W.2
  • 14
    • 0033164054 scopus 로고    scopus 로고
    • Approximation, metric entropy and small ball estimates for Gaussian measures
    • Li, W. V., and Linde, W. (1999). Approximation, metric entropy and small ball estimates for Gaussian measures. Ann. Probab. 27, 1556-1578.
    • (1999) Ann. Probab. , vol.27 , pp. 1556-1578
    • Li, W.V.1    Linde, W.2
  • 15
    • 0041729545 scopus 로고    scopus 로고
    • Gaussian processes: Inequalities, small ball probabilities and applications
    • Rao, C. R., and Shanbhag, D., eds.
    • Li, W. V., and Shao, Q. M. (2000). Gaussian processes: Inequalities, small ball probabilities and applications. To appear in Stochastic Processes: Theory and Methods, Vol. 19, Rao, C. R., and Shanbhag, D., eds.
    • (2000) Stochastic Processes: Theory and Methods , vol.19
    • Li, W.V.1    Shao, Q.M.2
  • 18
    • 0000755870 scopus 로고
    • Sample behavior of Gaussian processes
    • University of California Press, Berkeley
    • Marcus, M. B., and Shepp, L.A. (1972). Sample behavior of Gaussian processes. In Proc. Sixth Berkeley Symp. Math. Statist. Probab., Vol. 2, pp. 423-441, University of California Press, Berkeley.
    • (1972) Proc. Sixth Berkeley Symp. Math. Statist. Probab. , vol.2 , pp. 423-441
    • Marcus, M.B.1    Shepp, L.A.2
  • 19
    • 0001400956 scopus 로고
    • How often on a Brownian path does the law of iterated logarithm fail?
    • Orey, S., and Taylor, S. J. (1974). How often on a Brownian path does the law of iterated logarithm fail? Proc. London Math. Soc. 28(3), 174-192.
    • (1974) Proc. London Math. Soc. , vol.28 , Issue.3 , pp. 174-192
    • Orey, S.1    Taylor, S.J.2
  • 20
    • 22044451709 scopus 로고    scopus 로고
    • On the Gaussian measure of the intersection
    • Schechtman, G., Schlumprecht, T., and Zinn, J. (1998). On the Gaussian measure of the intersection. Ann. Probab. 26, 346-357.
    • (1998) Ann. Probab. , vol.26 , pp. 346-357
    • Schechtman, G.1    Schlumprecht, T.2    Zinn, J.3
  • 22
    • 21844487711 scopus 로고
    • Small ball probabilities of Gaussian fields
    • Shao, Q. M., and Wang, D. (1995). Small ball probabilities of Gaussian fields. Probab. Theory Rel. Fields 102, 511-517.
    • (1995) Probab. Theory Rel. Fields , vol.102 , pp. 511-517
    • Shao, Q.M.1    Wang, D.2
  • 23
    • 0000586493 scopus 로고
    • On multivariate normal probabilities of rectangles: Their dependence on correlations
    • Šidák, Z. (1968). On multivariate normal probabilities of rectangles: their dependence on correlations. Ann. Math. Statist. 39, 1425-1434.
    • (1968) Ann. Math. Statist. , vol.39 , pp. 1425-1434
    • Šidák, Z.1
  • 24
    • 21344456608 scopus 로고    scopus 로고
    • Some small ball probabilities for Gaussian processes under nonuniform norms
    • Stolz, W. (1996). Some small ball probabilities for Gaussian processes under nonuniform norms. J. Theoret. Probab. 9, 613-630.
    • (1996) J. Theoret. Probab. , vol.9 , pp. 613-630
    • Stolz, W.1
  • 25
    • 0000251720 scopus 로고
    • The small ball problem for the Brownian sheet
    • Talagrand, M. (1994). The small ball problem for the Brownian sheet. Ann. Probab. 22, 1331-1354.
    • (1994) Ann. Probab. , vol.22 , pp. 1331-1354
    • Talagrand, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.