메뉴 건너뛰기




Volumn 87, Issue 1, 2000, Pages 21-29

Binomial approximation to hypergeometric probabilities

Author keywords

62E17; Approximation of distributions; Binomial distribution; Hypergeometric distribution; Krawtchouck's polynomials; Orthogonal expansions

Indexed keywords


EID: 0042784960     PISSN: 03783758     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0378-3758(99)00187-1     Document Type: Article
Times cited : (13)

References (7)
  • 2
    • 0041518830 scopus 로고
    • Some approximate relations between terms of the hypergeometric, binomial and Poisson distributions
    • Burr I.W. Some approximate relations between terms of the hypergeometric, binomial and Poisson distributions. Comm. Statist. 1(4):1973;297-301.
    • (1973) Comm. Statist. , vol.1 , Issue.4 , pp. 297-301
    • Burr, I.W.1
  • 4
    • 0042520651 scopus 로고
    • The transformation of statistics to simplify their distributions
    • Hotelling H., Frankel L.R. The transformation of statistics to simplify their distributions. Ann. Math. Statist. 9:1938;87-96.
    • (1938) Ann. Math. Statist. , vol.9 , pp. 87-96
    • Hotelling, H.1    Frankel, L.R.2
  • 6
    • 0014254824 scopus 로고
    • Approximations to distribution functions which are hypergeometric series
    • Ord J.K. Approximations to distribution functions which are hypergeometric series. Biometrika. 55(1):1968;243-248.
    • (1968) Biometrika , vol.55 , Issue.1 , pp. 243-248
    • Ord, J.K.1
  • 7
    • 0042520650 scopus 로고
    • On the asymptotic transformation of certain distributions into the normal distribution
    • McGraw Hill, New York
    • Wasow, W., 1956. On the asymptotic transformation of certain distributions into the normal distribution. Proceedings of the Sixth Symposium on Applied Mathmatics Society (Numerical Analysis), Vol. VI. McGraw Hill, New York, pp. 251-259.
    • (1956) Proceedings of the Sixth Symposium on Applied Mathmatics Society (Numerical Analysis) , vol.6 , pp. 251-259
    • Wasow, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.