-
2
-
-
84985434171
-
Numerical experiments in stochasticity and homoclinic oscillations
-
Channon S. Lebowitz J. Numerical experiments in stochasticity and homoclinic oscillations Annals. NY Ac .Sc. 357 1980 108-118
-
(1980)
Annals. NY Ac .Sc.
, vol.357
, pp. 108-118
-
-
Channon, S.1
Lebowitz, J.2
-
3
-
-
84896994731
-
Trellises formed by stable and unstable manifolds in the plane
-
Easton R. Trellises formed by stable and unstable manifolds in the plane Trans. Am. Math. Soc. 294 1986 2
-
(1986)
Trans. Am. Math. Soc.
, vol.294
, pp. 2
-
-
Easton, R.1
-
4
-
-
0002258783
-
Slowly pulsating separatrices sweep homoclinic tangles where islands must be small: An extension of classical adiabatic theory
-
Elskens Y. Escande D. Slowly pulsating separatrices sweep homoclinic tangles where islands must be small: An extension of classical adiabatic theory Nonlinearity 4 1991 615-667
-
(1991)
Nonlinearity
, vol.4
, pp. 615-667
-
-
Elskens, Y.1
Escande, D.2
-
5
-
-
0000664107
-
Melnikov method and exponentially small splitting of separatrices
-
Gelfreich V. Melnikov method and exponentially small splitting of separatrices Physica D 101 3-4 1997 227-248
-
(1997)
Physica D
, vol.101
, Issue.3-4
, pp. 227-248
-
-
Gelfreich, V.1
-
7
-
-
0032658320
-
Resonant capture and separatrix crossing in dual-spin spacecraft
-
Haberman R. Rand R. Yuster T. Resonant capture and separatrix crossing in dual-spin spacecraft Nonlinear Dynam. 18 2 1999 159-184
-
(1999)
Nonlinear Dynam.
, vol.18
, Issue.2
, pp. 159-184
-
-
Haberman, R.1
Rand, R.2
Yuster, T.3
-
8
-
-
0001994394
-
Capture into resonance: An extension of the use of adiabatic invariants
-
Henrard J. Capture into resonance: An extension of the use of adiabatic invariants Celest. Mech. 27 1982 3-22
-
(1982)
Celest. Mech.
, vol.27
, pp. 3-22
-
-
Henrard, J.1
-
10
-
-
33646903221
-
A geometric criterion for adiabatic chaos
-
Kaper T.J. Kovačič G. A geometric criterion for adiabatic chaos J. Math. Phys 35 3 1994 1202-1218
-
(1994)
J. Math. Phys
, vol.35
, Issue.3
, pp. 1202-1218
-
-
Kaper, T.J.1
Kovačič, G.2
-
12
-
-
0010890055
-
Symplectic maps, variational principles, and transport
-
Meiss J. Symplectic maps, variational principles, and transport Rev. Modern Phys. 64 3 1992 795-848
-
(1992)
Rev. Modern Phys.
, vol.64
, Issue.3
, pp. 795-848
-
-
Meiss, J.1
-
13
-
-
21744449703
-
Average exit time for volume preserving maps
-
Meiss J. Average exit time for volume preserving maps Chaos 7 1 1997 139-147
-
(1997)
Chaos
, vol.7
, Issue.1
, pp. 139-147
-
-
Meiss, J.1
-
14
-
-
0021660205
-
The separation of motions in systems with rapidly rotating phase
-
Neishtadt A. The separation of motions in systems with rapidly rotating phase P.M.M. USSR 48 1984 133-139
-
(1984)
P.M.M. USSR
, vol.48
, pp. 133-139
-
-
Neishtadt, A.1
-
15
-
-
0001123735
-
Passage through a separatrix in a resonance problem with a slowly-varying parameter
-
Neishtadt A.I. Passage through a separatrix in a resonance problem with a slowly-varying parameter Prikl. Mat. Meh. 39 4-6 1975 1331-1334
-
(1975)
Prikl. Mat. Meh.
, vol.39
, Issue.4-6
, pp. 1331-1334
-
-
Neishtadt, A.I.1
-
18
-
-
0000746924
-
Universal properties of chaotic transport in the presence of diffusion
-
Rom-Kedar V. Poje A.C. Universal properties of chaotic transport in the presence of diffusion Phys. Fluids 11 8 1999 2044-2057
-
(1999)
Phys. Fluids
, vol.11
, Issue.8
, pp. 2044-2057
-
-
Rom-Kedar, V.1
Poje, A.C.2
-
20
-
-
0030366603
-
Higher-order Melnikov theory for adiabatic systems
-
Soto-Trevinõ C. Kaper T.J. Higher-order Melnikov theory for adiabatic systems J. Math. Phys. 37 12 1996 6220-6249
-
(1996)
J. Math. Phys.
, vol.37
, Issue.12
, pp. 6220-6249
-
-
Soto-Trevinõ, C.1
Kaper, T.J.2
-
21
-
-
4243327271
-
Change of the adiabatic invariant due to separatrix crossing
-
Tennyson J.L. Cary J.R. Escande D.F. Change of the adiabatic invariant due to separatrix crossing Phys. Rev. Lett. 56 20 1986 2117-2120
-
(1986)
Phys. Rev. Lett.
, vol.56
, Issue.20
, pp. 2117-2120
-
-
Tennyson, J.L.1
Cary, J.R.2
Escande, D.F.3
-
22
-
-
0001933704
-
Width of stochastic layers in near-integrable two-dimensional symplectic maps
-
Treschev D. Width of stochastic layers in near-integrable two-dimensional symplectic maps Phys. D 116 1-2 1998 21-43
-
(1998)
Phys. D
, vol.116
, Issue.1-2
, pp. 21-43
-
-
Treschev, D.1
|