메뉴 건너뛰기




Volumn 18, Issue 1, 2000, Pages 55-61

Calculation of photoemission spectra of the doped Mott insulator La1-xSrxTiO3 using LDA+DMFT(QMC)

Author keywords

71.27.+a Strongly correlated electron systems; heavy fermions; 74.25.Jb Electronic structure; 79.60. i Photoemission and photoelectron spectra

Indexed keywords


EID: 0042732109     PISSN: 14346028     EISSN: None     Source Type: Journal    
DOI: 10.1007/s100510070077     Document Type: Article
Times cited : (69)

References (55)
  • 1
    • 10644250257 scopus 로고
    • P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964); W. Kohn, L.J. Sham, Phys. Rev. 140, 4A, A1133 (1965).
    • (1964) Phys. Rev. B , vol.136 , pp. 864
    • Hohenberg, P.1    Kohn, W.2
  • 2
    • 0042113153 scopus 로고
    • P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964); W. Kohn, L.J. Sham, Phys. Rev. 140, 4A, A1133 (1965).
    • (1965) Phys. Rev. , vol.140
    • Kohn, W.1    Sham, L.J.2
  • 6
    • 0003015523 scopus 로고
    • edited by V.J. Emery World Scientific, Singapore
    • D. Vollhardt, in Correlated Electron Systems, edited by V.J. Emery (World Scientific, Singapore, 1993), p. 57.
    • (1993) Correlated Electron Systems , pp. 57
    • Vollhardt, D.1
  • 11
    • 0014936126 scopus 로고
    • H. Keiter, J.C. Kimball, Phys. Rev. Lett. 25, 672 (1970); N.E. Bickers, D.L. Cox, J.W. Wilkins, Phys. Rev. B 36, 2036 (1987).
    • (1970) Phys. Rev. Lett. , vol.25 , pp. 672
    • Keiter, H.1    Kimball, J.C.2
  • 15
    • 0000946817 scopus 로고
    • J.E. Hirsch, R.M. Fye, Phys. Rev. Lett. 56, 2521 (1986); M. Jarrell, Phys. Rev. Lett. 69, 168 (1992); M. Rozenberg, X.Y. Zhang, G. Kotliar, Phys. Rev. Lett. 69, 1236 (1992); A. Georges, W. Krauth, Phys. Rev. Lett. 69, 1240 (1992).
    • (1986) Phys. Rev. Lett. , vol.56 , pp. 2521
    • Hirsch, J.E.1    Fye, R.M.2
  • 16
    • 4043083512 scopus 로고
    • J.E. Hirsch, R.M. Fye, Phys. Rev. Lett. 56, 2521 (1986); M. Jarrell, Phys. Rev. Lett. 69, 168 (1992); M. Rozenberg, X.Y. Zhang, G. Kotliar, Phys. Rev. Lett. 69, 1236 (1992); A. Georges, W. Krauth, Phys. Rev. Lett. 69, 1240 (1992).
    • (1992) Phys. Rev. Lett. , vol.69 , pp. 168
    • Jarrell, M.1
  • 17
    • 0001245438 scopus 로고
    • J.E. Hirsch, R.M. Fye, Phys. Rev. Lett. 56, 2521 (1986); M. Jarrell, Phys. Rev. Lett. 69, 168 (1992); M. Rozenberg, X.Y. Zhang, G. Kotliar, Phys. Rev. Lett. 69, 1236 (1992); A. Georges, W. Krauth, Phys. Rev. Lett. 69, 1240 (1992).
    • (1992) Phys. Rev. Lett. , vol.69 , pp. 1236
    • Rozenberg, M.1    Zhang, X.Y.2    Kotliar, G.3
  • 18
    • 4243711917 scopus 로고
    • J.E. Hirsch, R.M. Fye, Phys. Rev. Lett. 56, 2521 (1986); M. Jarrell, Phys. Rev. Lett. 69, 168 (1992); M. Rozenberg, X.Y. Zhang, G. Kotliar, Phys. Rev. Lett. 69, 1236 (1992); A. Georges, W. Krauth, Phys. Rev. Lett. 69, 1240 (1992).
    • (1992) Phys. Rev. Lett. , vol.69 , pp. 1240
    • Georges, A.1    Krauth, W.2
  • 20
    • 0041457533 scopus 로고    scopus 로고
    • to be published, preprint cond-mat/0003377
    • R. Bulla, Adv. Sol. State Phys. (to be published), preprint cond-mat/0003377.
    • Adv. Sol. State Phys
    • Bulla, R.1
  • 25
    • 0009504146 scopus 로고    scopus 로고
    • Ph.D. thesis, Universität Hamburg 1998, Shaker Verlag, Aachen
    • 3, Ph.D. thesis, Universität Hamburg 1998, Shaker Verlag, Aachen 1999.
    • (1999) 3
    • Wolenski, T.1
  • 30
    • 23244461569 scopus 로고
    • O.K. Andersen, Phys. Rev. B 12, 3060 (1975); O. Gunnarsson, O. Jepsen, O.K. Andersen, Phys. Rev. B 27, 7144 (1983).
    • (1975) Phys. Rev. B , vol.12 , pp. 3060
    • Andersen, O.K.1
  • 32
    • 0039706534 scopus 로고
    • E. Müller-Hartmann, Z. Phys. B 74, 507 (1989); J. Wahle et al., Phys. Rev. B 58, 12749 (1998).
    • (1989) Z. Phys. B , vol.74 , pp. 507
    • Müller-Hartmann, E.1
  • 33
    • 0000661097 scopus 로고    scopus 로고
    • E. Müller-Hartmann, Z. Phys. B 74, 507 (1989); J. Wahle et al., Phys. Rev. B 58, 12749 (1998).
    • (1998) Phys. Rev. B , vol.58 , pp. 12749
    • Wahle, J.1
  • 35
    • 0000290804 scopus 로고    scopus 로고
    • M.J. Rozenberg, Phys. Rev. B 55, R4855 (1997); J.E. Han, M. Jarrell, D.L. Cox, Phys. Rev. B 58, R4199 (1998); K. Held, D. Vollhardt, Eur. Phys. J. B 5, 473 (1998).
    • (1997) Phys. Rev. B , vol.55
    • Rozenberg, M.J.1
  • 36
    • 0001413434 scopus 로고    scopus 로고
    • M.J. Rozenberg, Phys. Rev. B 55, R4855 (1997); J.E. Han, M. Jarrell, D.L. Cox, Phys. Rev. B 58, R4199 (1998); K. Held, D. Vollhardt, Eur. Phys. J. B 5, 473 (1998).
    • (1998) Phys. Rev. B , vol.58
    • Han, J.E.1    Jarrell, M.2    Cox, D.L.3
  • 37
    • 0032291805 scopus 로고    scopus 로고
    • M.J. Rozenberg, Phys. Rev. B 55, R4855 (1997); J.E. Han, M. Jarrell, D.L. Cox, Phys. Rev. B 58, R4199 (1998); K. Held, D. Vollhardt, Eur. Phys. J. B 5, 473 (1998).
    • (1998) Eur. Phys. J. B , vol.5 , pp. 473
    • Held, K.1    Vollhardt, D.2
  • 45
    • 0030140624 scopus 로고    scopus 로고
    • For a review on the maximum entropy method see M. Jarrell, J.E. Gubernatis, Physics Reports 269, 133 (1996). Here, the code of A. Sandvik was employed. Note, that the maximum entropy method is most reliable in the vicinity of the Fermi energy. At larger energies, the energy resolution becomes poorer.
    • (1996) Physics Reports , vol.269 , pp. 133
    • Jarrell, M.1    Gubernatis, J.E.2
  • 48
    • 0042459440 scopus 로고    scopus 로고
    • NCA is a self-consistent perturbation theory for the single-impurity Anderson model and is often a fast method to obtain results for this model and also within DMFT. However, NCA is known to violate Fermi liquid properties at temperatures much lower than the smallest energy scale of the problem and whenever charge excitations become important [37,39]. Hence, in some parameter ranges it fails to account for the proper low-energy physics and must therefore be applied with considerable care [39]
    • NCA is a self-consistent perturbation theory for the single-impurity Anderson model and is often a fast method to obtain results for this model and also within DMFT. However, NCA is known to violate Fermi liquid properties at temperatures much lower than the smallest energy scale of the problem and whenever charge excitations become important [37,39]. Hence, in some parameter ranges it fails to account for the proper low-energy physics and must therefore be applied with considerable care [39].
  • 50
    • 4243170741 scopus 로고
    • A. Fujimori et al., Phys. Rev. Lett. 69, 1796 (1992). A. Fujimori et al., Phys. Rev. B 46, 9841 (1992). A qualitatively and quantitatively similar spectrum was obtained recently by Yoshida et al., preprint cond-mat/9911446, with an experimental energy resolution of only 30 meV. One may suppose, however, that broadening effects due to the polycrystalline nature of the sample and surface effects are, then, larger than the instrumental resolution.
    • (1992) Phys. Rev. Lett. , vol.69 , pp. 1796
    • Fujimori, A.1
  • 51
    • 0000386712 scopus 로고
    • A. Fujimori et al., Phys. Rev. Lett. 69, 1796 (1992). A. Fujimori et al., Phys. Rev. B 46, 9841 (1992). A qualitatively and quantitatively similar spectrum was obtained recently by Yoshida et al., preprint cond-mat/9911446, with an experimental energy resolution of only 30 meV. One may suppose, however, that broadening effects due to the polycrystalline nature of the sample and surface effects are, then, larger than the instrumental resolution.
    • (1992) Phys. Rev. B , vol.46 , pp. 9841
    • Fujimori, A.1
  • 52
    • 0042459443 scopus 로고    scopus 로고
    • At present, QMC simulations of the DMFT equations are not feasible at the experimental temperature (80 K). We note, however, that no intrinsic temperature dependence was observed in the experiment [40], at least up to room temperature
    • At present, QMC simulations of the DMFT equations are not feasible at the experimental temperature (80 K). We note, however, that no intrinsic temperature dependence was observed in the experiment [40], at least up to room temperature.
  • 53
    • 0042960524 scopus 로고    scopus 로고
    • In Figure 4, the distance between the lower Hubbard band and the chemical potential is seen to decrease with increasing U. Note, however, that the upper Hubbard band is also shifted to higher energies
    • In Figure 4, the distance between the lower Hubbard band and the chemical potential is seen to decrease with increasing U. Note, however, that the upper Hubbard band is also shifted to higher energies.
  • 54
    • 0042459441 scopus 로고    scopus 로고
    • If one multiplies the IPT and NCA results of Figure 3 with the Fermi function and employs a broadening of 0.3 eV one obtains a spectrum where the lower Hubbard band is nearer to the Fermi energy and which has a less pronounced minimum or shoulder between Hubbard and quasi-particle band
    • If one multiplies the IPT and NCA results of Figure 3 with the Fermi function and employs a broadening of 0.3 eV one obtains a spectrum where the lower Hubbard band is nearer to the Fermi energy and which has a less pronounced minimum or shoulder between Hubbard and quasi-particle band.
  • 55
    • 0042960525 scopus 로고    scopus 로고
    • preprint cond-mat/0002014
    • B. Keimer et al. preprint cond-mat/0002014.
    • Keimer, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.