메뉴 건너뛰기




Volumn 2, Issue , 1995, Pages 894-898

A feedback analysis of perceptron learning for neural networks

Author keywords

[No Author keywords available]

Indexed keywords

LEARNING ALGORITHMS; TIME DOMAIN ANALYSIS; UNCERTAINTY ANALYSIS;

EID: 0042655363     PISSN: 10586393     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ACSSC.1995.540829     Document Type: Conference Paper
Times cited : (3)

References (7)
  • 2
    • 0028539791 scopus 로고
    • The widrow-hoff algorithm for McCulloch-Pitts type neurons
    • Nov
    • S. Hui, S.H. Zak, "The Widrow-Hoff algorithm for McCulloch-Pitts type neurons," IEEE Trans. Neural Networks, vol. 5, no. 6, pp. 924-929, Nov. 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.6 , pp. 924-929
    • Hui, S.1    Zak, S.H.2
  • 3
    • 85032752004 scopus 로고
    • Progress in supervised neural networks
    • Jan
    • D.R. Hush, B.G. Home, "Progress in supervised neural networks," IEEE Signal Processing Magazine, vol. 10, no. 1, pp. 8-39, Jan. 1993.
    • (1993) IEEE Signal Processing Magazine , vol.10 , Issue.1 , pp. 8-39
    • Hush, D.R.1    Home, B.G.2
  • 6
    • 84946543883 scopus 로고
    • A time-domain feedback analysis of adaptive gradient algorithms via the Small Gain Theorem
    • San Diego, CA, July
    • A.H. Sayed and M. Rupp, "A time-domain feedback analysis of adaptive gradient algorithms via the Small Gain Theorem", Proc. SPIE Conference on Advanced Signal Processing, vol. 2563, pp. 458-469, San Diego, CA, July 1995.
    • (1995) Proc. SPIE Conference on Advanced Signal Processing , vol.2563 , pp. 458-469
    • Sayed, A.H.1    Rupp, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.