메뉴 건너뛰기




Volumn 18, Issue 3, 2003, Pages 235-240

Response probability estimation for randomly excited quasi-linear systems using a neural network approach

Author keywords

Neural network; Parametric excitation; Random vibration; Response probability

Indexed keywords

COMPUTER SIMULATION; GAUSSIAN NOISE (ELECTRONIC); LINEAR SYSTEMS; MONTE CARLO METHODS; NEURAL NETWORKS; PROBABILITY DENSITY FUNCTION; WHITE NOISE;

EID: 0042631005     PISSN: 02668920     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0266-8920(03)00027-4     Document Type: Article
Times cited : (2)

References (21)
  • 1
    • 0024071522 scopus 로고
    • Exact stationary response solution for second-order non-linear systems under parametric and external white-noise excitations: Part II
    • Lin Y.K., Cai G.Q. Exact stationary response solution for second-order non-linear systems under parametric and external white-noise excitations: part II. J Appl Mech. 55:(3):1988;702-705.
    • (1988) J Appl Mech , vol.55 , Issue.3 , pp. 702-705
    • Lin, Y.K.1    Cai, G.Q.2
  • 3
    • 0030783928 scopus 로고    scopus 로고
    • Response spectral densities of strongly non-linear systems under random excitation
    • Cai G.Q., Lin Y.K. Response spectral densities of strongly non-linear systems under random excitation. Probab Engng Mech. 12:(1):1997;41-47.
    • (1997) Probab Engng Mech , vol.12 , Issue.1 , pp. 41-47
    • Cai, G.Q.1    Lin, Y.K.2
  • 4
    • 0043146741 scopus 로고    scopus 로고
    • Response spectral densities of systems under both additive and multiplicative excitation
    • University of Illinois at Urbana-Champaign
    • Cai GQ. Response spectral densities of systems under both additive and multiplicative excitation. In: Proceedings of IUTAM Symposium on Non-linear Stochastic Dynamics, University of Illinois at Urbana-Champaign; 2002.
    • (2002) Proceedings of IUTAM Symposium on Non-linear Stochastic Dynamics
    • Cai, G.Q.1
  • 5
    • 11944266539 scopus 로고
    • Information theory and statistical mechanics
    • Jaynes E.T. Information theory and statistical mechanics. Phys Rev. 106:1957;620-630.
    • (1957) Phys Rev , vol.106 , pp. 620-630
    • Jaynes, E.T.1
  • 6
    • 0014864732 scopus 로고
    • First-excursion failure of randomly excited structures: II
    • Lin Y.K. First-excursion failure of randomly excited structures: II. AIAA J. 10:(8):1970;1888-1890.
    • (1970) AIAA J , vol.10 , Issue.8 , pp. 1888-1890
    • Lin, Y.K.1
  • 7
    • 38249040936 scopus 로고
    • On the estimation of failure probability having prescribed statistical moments of first passage time
    • Spencer B.F., Bergman L.A. On the estimation of failure probability having prescribed statistical moments of first passage time. Probab Engng Mech. 1:(3):1986;131-135.
    • (1986) Probab Engng Mech , vol.1 , Issue.3 , pp. 131-135
    • Spencer, B.F.1    Bergman, L.A.2
  • 8
    • 0042403230 scopus 로고
    • Maximum entropy and discritization of probability distribution
    • Rosenbluth E., Karmeshu, Hong H.P. Maximum entropy and discritization of probability distribution. Probab Engng Mech. 2:(2):1987;58-63.
    • (1987) Probab Engng Mech , vol.2 , Issue.2 , pp. 58-63
    • Rosenbluth, E.1    Karmeshu2    Hong, H.P.3
  • 9
    • 0006211475 scopus 로고
    • Principle of maximum entropy and probability distributions: Definition of applicability field
    • Tagliani A. Principle of maximum entropy and probability distributions: definition of applicability field. Probab Engng Mech. 4:(2):1989;99-104.
    • (1989) Probab Engng Mech , vol.4 , Issue.2 , pp. 99-104
    • Tagliani, A.1
  • 10
    • 0002540818 scopus 로고
    • Maximum entropy principle in stochastic dynamics
    • Sobzyk K., Trebicki J. Maximum entropy principle in stochastic dynamics. Probab Engng Mech. 5:(2):1990;102-110.
    • (1990) Probab Engng Mech , vol.5 , Issue.2 , pp. 102-110
    • Sobzyk, K.1    Trebicki, J.2
  • 11
    • 0001251986 scopus 로고
    • Maximum entropy principle and non-linear oscillators
    • Sobzyk K., Trebicki J. Maximum entropy principle and non-linear oscillators. Physica A. 193:1993;448-468.
    • (1993) Physica A , vol.193 , pp. 448-468
    • Sobzyk, K.1    Trebicki, J.2
  • 12
    • 0043146739 scopus 로고
    • Non-stationery response of stochastic systems via maximum entropy principle
    • A. Naess, & S. Krenk., Trondheim, Norway, Norway: Trondheim
    • Sobzyk K., Trebicki J. Naess A., Krenk S. Proceedings of IUTAM Symposium on Advances in Non-linear Stochastic Mechanics, Trondheim, Norway. Proceedings of IUTAM Symposium on Advances in Non-linear Stochastic Mechanics, Trondheim, Norway. 1995;437-448 Trondheim, Norway.
    • (1995) Proceedings of IUTAM Symposium on Advances in Non-linear Stochastic Mechanics , pp. 437-448
    • Sobzyk, K.1    Trebicki, J.2
  • 13
    • 0042144756 scopus 로고
    • Probability distribution and mean crossing rate of non-Gaussian response of linear systems
    • University of Waterloo, Canada
    • Pandey MD, Ariaratnam ST. Probability distribution and mean crossing rate of non-Gaussian response of linear systems. Technical Report. University of Waterloo, Canada; 1994.
    • (1994) Technical Report
    • Pandey, M.D.1    Ariaratnam, S.T.2
  • 16
    • 0001739440 scopus 로고
    • On stochastic differential equations
    • Ito K. On stochastic differential equations. Memoirs Am Math Soc. 4:1951;289-302.
    • (1951) Memoirs Am Math Soc , vol.4 , pp. 289-302
    • Ito, K.1
  • 17
    • 84929976318 scopus 로고
    • On a formula concerning stochastic differentials
    • Ito K. On a formula concerning stochastic differentials. Nagoya Math J. 3:1951;55-65.
    • (1951) Nagoya Math J , vol.3 , pp. 55-65
    • Ito, K.1
  • 18
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoid function
    • Cybenko G. Approximation by superpositions of a sigmoid function. Math Control Signal Syst. 2:1989;301-314.
    • (1989) Math Control Signal Syst , vol.2 , pp. 301-314
    • Cybenko, G.1
  • 19
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximations
    • Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximations. Neural Networks. 2:1989;359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.