메뉴 건너뛰기




Volumn 8, Issue 4, 1998, Pages 357-364

A guided walk Metropolis algorithm

Author keywords

Bayesian computation; Markov Chain Monte Carlo; Metropolis Hastings algorithm

Indexed keywords


EID: 0042595749     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1008880707168     Document Type: Article
Times cited : (45)

References (25)
  • 2
    • 0042507898 scopus 로고    scopus 로고
    • Analysis of a non-reversible Markov chain sampler
    • Biometrics Unit, Cornell University
    • Diaconis, P., Holmes, S. and Neal, R. M. (1997) Analysis of a non-reversible Markov chain sampler. Technical Report BU-1385-M, Biometrics Unit, Cornell University.
    • (1997) Technical Report BU-1385-M
    • Diaconis, P.1    Holmes, S.2    Neal, R.M.3
  • 5
    • 0000954353 scopus 로고    scopus 로고
    • Efficient Metropolis jumping rules
    • Berger, J. O., Bernardo, J. M., Dawid, A. P. and Smith, A. F. M. (eds), Oxford University Press
    • Gelman, A., Roberts, G. and Gilks W. (1996) Efficient Metropolis jumping rules, in Bayesian Statistics 5, Berger, J. O., Bernardo, J. M., Dawid, A. P. and Smith, A. F. M. (eds), Oxford University Press.
    • (1996) Bayesian Statistics 5
    • Gelman, A.1    Roberts, G.2    Gilks, W.3
  • 7
    • 0001933823 scopus 로고    scopus 로고
    • A practical robust method for Bayesian model selection: A case study in the analysis of clinical trials
    • Bayesian Robustness Berger, J. O., Betro, B., Moreno, E., Pericchi, L. R., Ruggeri, F., Salinetti, G. and Wasserman, L. (eds)
    • Greenhouse, J. and Wasserman, L. (1996) A practical robust method for Bayesian model selection: a case study in the analysis of clinical trials, in Bayesian Robustness Berger, J. O., Betro, B., Moreno, E., Pericchi, L. R., Ruggeri, F., Salinetti, G. and Wasserman, L. (eds), Institute of Mathematical Statistics Lecture Notes - Monograph Series, pp. 41-58.
    • (1996) Institute of Mathematical Statistics Lecture Notes - Monograph Series , pp. 41-58
    • Greenhouse, J.1    Wasserman, L.2
  • 8
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings, W. K. (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 9
    • 0009349032 scopus 로고
    • A generalized guided Monte Carlo algorithm
    • Horowitz, A. M. (1991) A generalized guided Monte Carlo algorithm. Physics Letters B, 268, 247-252.
    • (1991) Physics Letters B , vol.268 , pp. 247-252
    • Horowitz, A.M.1
  • 10
  • 11
    • 0347771319 scopus 로고    scopus 로고
    • Bayesian computation for non-homogeneous Poisson processes in software reliability
    • Kuo, L. and Yang, T. Y. (1996) Bayesian computation for non-homogeneous Poisson processes in software reliability. Journal of the American Statistical Association, 91, 763-773.
    • (1996) Journal of the American Statistical Association , vol.91 , pp. 763-773
    • Kuo, L.1    Yang, T.Y.2
  • 13
    • 0041506124 scopus 로고
    • Issues in Bayesian analysis of neural network models
    • Institute of Statistics and Decision Sciences, Duke University
    • Muller, P. and Rios Insua, D. (1995) Issues in Bayesian analysis of neural network models. Working Paper 95-31, Institute of Statistics and Decision Sciences, Duke University.
    • (1995) Working Paper 95-31
    • Muller, P.1    Rios Insua, D.2
  • 14
    • 0000462339 scopus 로고    scopus 로고
    • A Bayesian semiparametric model for case-control studies with errors in variables
    • Muller, P. and Roeder, K. (1997) A Bayesian semiparametric model for case-control studies with errors in variables. Biometrika, 84, 523-537.
    • (1997) Biometrika , vol.84 , pp. 523-537
    • Muller, P.1    Roeder, K.2
  • 15
    • 0004087397 scopus 로고
    • Probabilistic inference using Markov Chain Monte Carlo methods
    • Department of Computer Science, University of Toronto
    • Neal, R. M. (1993) Probabilistic inference using Markov Chain Monte Carlo methods. Technical Report CRG-TR-93-1, Department of Computer Science, University of Toronto.
    • (1993) Technical Report CRG-TR-93-1
    • Neal, R.M.1
  • 16
    • 0009202034 scopus 로고
    • Suppressing random walks in Markov Chain Monte Carlo using ordered overrelaxation
    • Department of Statistics, University of Toronto
    • Neal, R. M. (1995) Suppressing random walks in Markov Chain Monte Carlo using ordered overrelaxation. Technical Report 9508, Department of Statistics, University of Toronto.
    • (1995) Technical Report 9508
    • Neal, R.M.1
  • 18
    • 0031285157 scopus 로고    scopus 로고
    • Weak convergence and optimal scaling of random walk Metropolis algorithms
    • Roberts, G. O., Gelman, A. and Gilks, W. (1997) Weak convergence and optimal scaling of random walk Metropolis algorithms. Annals of Applied Probability, 1, 110-120.
    • (1997) Annals of Applied Probability , vol.1 , pp. 110-120
    • Roberts, G.O.1    Gelman, A.2    Gilks, W.3
  • 20
    • 0030632216 scopus 로고    scopus 로고
    • A flexible approach to time-varying coefficients in the Cox regression setting
    • Sargent, D. J. (1997) A flexible approach to time-varying coefficients in the Cox regression setting. Lifetime Data Analysis, 3, 13-25.
    • (1997) Lifetime Data Analysis , vol.3 , pp. 13-25
    • Sargent, D.J.1
  • 21
    • 0032442347 scopus 로고    scopus 로고
    • A general framework for random effects survival analysis in the Cox proportional hazards setting
    • to appear
    • Sargent, D. J. (1998) A general framework for random effects survival analysis in the Cox proportional hazards setting. Biometrics, 54, to appear.
    • (1998) Biometrics , vol.54
    • Sargent, D.J.1
  • 22
    • 0003053548 scopus 로고
    • Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods
    • Smith, A. F. M. and Roberts, G. O. (1994) Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods (with discussion). Journal of the Royal Statistical Society B, 55, 3-23.
    • (1994) Journal of the Royal Statistical Society B , vol.55 , pp. 3-23
    • Smith, A.F.M.1    Roberts, G.O.2
  • 23
    • 0000576595 scopus 로고
    • Markov chains for exploring posterior distributions
    • Tierney, L. (1994) Markov chains for exploring posterior distributions (with discussion). Annals of Statistics, 22, 1701-1762.
    • (1994) Annals of Statistics , vol.22 , pp. 1701-1762
    • Tierney, L.1
  • 24
    • 0032330376 scopus 로고    scopus 로고
    • Bayesian goodness of fit testing using infinite dimensional exponential families
    • Verdinelli and Wasserman (1998) Bayesian goodness of fit testing using infinite dimensional exponential families. Annals of Statistics, 26, 1215-1241.
    • (1998) Annals of Statistics , vol.26 , pp. 1215-1241
    • Verdinelli1    Wasserman2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.