메뉴 건너뛰기




Volumn 145, Issue 2-3, 2003, Pages 195-203

A note on proximity of distributions in terms of coinciding moments

Author keywords

Hankel matrix; Levy and Zolotarev distance; Maximum entropy; Moments; Proximity of distributions

Indexed keywords

APPROXIMATION THEORY; DISTANCE MEASUREMENT; ENTROPY; METHOD OF MOMENTS; SET THEORY;

EID: 0042522647     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0096-3003(02)00477-0     Document Type: Article
Times cited : (10)

References (13)
  • 1
    • 0002260533 scopus 로고
    • Where do we stand on maximum entropy?
    • R.D. Levine, & M. Tribus. Cambridge MA: MIT Press
    • Jaynes E.T. Where do we stand on maximum entropy? Levine R.D., Tribus M. The Maximum Entropy Formalism. 1978;15-118 MIT Press, Cambridge MA.
    • (1978) The Maximum Entropy Formalism , pp. 15-118
    • Jaynes, E.T.1
  • 3
    • 84941465845 scopus 로고
    • A lower bound for discrimination information in terms of variation
    • Kullback S. A lower bound for discrimination information in terms of variation. IEEE Trans. Inform. Theor. IT-13:1967;126-127.
    • (1967) IEEE Trans. Inform. Theor. , vol.IT-13 , pp. 126-127
    • Kullback, S.1
  • 4
    • 0016428806 scopus 로고
    • Sharper lower bounds for discrimination information in terms of variation
    • Toussaint G.T. Sharper lower bounds for discrimination information in terms of variation. IEEE Trans. Inform. Theor. (Corresp.). 21:1975;99-100.
    • (1975) IEEE Trans. Inform. Theor. (Corresp.) , vol.21 , pp. 99-100
    • Toussaint, G.T.1
  • 6
    • 0002707794 scopus 로고    scopus 로고
    • Entropy-convergence in Stiltjes and Hamburger moment problem
    • Frontini M., Tagliani A. Entropy-convergence in Stiltjes and Hamburger moment problem. Appl. Math. Comput. 88:1997;39-51.
    • (1997) Appl. Math. Comput. , vol.88 , pp. 39-51
    • Frontini, M.1    Tagliani, A.2
  • 7
    • 0042704023 scopus 로고    scopus 로고
    • A note on estimating the diameter of a truncated moment class
    • Tardella L. A note on estimating the diameter of a truncated moment class. Stat. Probab. Lett. 54:2001;115-124.
    • (2001) Stat. Probab. Lett. , vol.54 , pp. 115-124
    • Tardella, L.1
  • 10
    • 0042339044 scopus 로고
    • Moments determine the tail of a distribution (but not much else)
    • Center for likelihood Studies, Department of Statistics, The Pennsylvania State University Park, PA
    • B.G. Lindsay, P. Basak, Moments determine the tail of a distribution (but not much else), Technical Report 95-7, Center for likelihood Studies, Department of Statistics, The Pennsylvania State University Park, PA, 1995.
    • (1995) Technical Report , vol.95 , Issue.7
    • Lindsay, B.G.1    Basak, P.2
  • 11
    • 0042182484 scopus 로고
    • On the reduced moment problem
    • Khamis S.H. On the reduced moment problem. Ann. Math. Stat. 25:1954;113-122.
    • (1954) Ann. Math. Stat. , vol.25 , pp. 113-122
    • Khamis, S.H.1
  • 12
    • 31244431547 scopus 로고    scopus 로고
    • Entropy estimate of probability densities having assigned moments: Hausdorff case
    • Tagliani A. Entropy estimate of probability densities having assigned moments: Hausdorff case. Appl. Math. Lett. 15:2002;309-314.
    • (2002) Appl. Math. Lett. , vol.15 , pp. 309-314
    • Tagliani, A.1
  • 13
    • 0037175413 scopus 로고    scopus 로고
    • An upper bound for entropy of discrete distributions having assigned moments
    • A. Tagliani, An upper bound for entropy of discrete distributions having assigned moments, Appl. Math. Comput. 133 (2002) 159-170.
    • (2002) Appl. Math. Comput. , vol.133 , pp. 159-170
    • Tagliani, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.