-
1
-
-
0019079043
-
Temperature calibration of an infrared radiation source
-
M. S. Scholl, “Temperature calibration of an infrared radiation source,” Appl. Opt. 19, 3622-3625 (1980).
-
(1980)
Appl. Opt.
, vol.19
, pp. 3622-3625
-
-
Scholl, M.S.1
-
2
-
-
0020089271
-
Thermal considerations in the design of a dynamic IR target
-
M. S. Scholl, “Thermal considerations in the design of a dynamic IR target,” Appl. Opt. 21, 660-667 (1982).
-
(1982)
Appl. Opt.
, vol.21
, pp. 660-667
-
-
Scholl, M.S.1
-
3
-
-
0020126790
-
Spatial and temporal effects due to target irradiation: A study
-
M. S. Scholl, “Spatial and temporal effects due to target irradiation: a study,” Appl. Opt. 21, 1615-1620 (1982).
-
(1982)
Appl. Opt.
, vol.21
, pp. 1615-1620
-
-
Scholl, M.S.1
-
4
-
-
0020127084
-
Errors in radiance simulation and scene discrimination
-
M. S. Scholl, “Errors in radiance simulation and scene discrimination,” Appl. Opt. 21, 1839-1843 (1982).
-
(1982)
Appl. Opt.
, vol.21
, pp. 1839-1843
-
-
Scholl, M.S.1
-
5
-
-
0020139003
-
Target temperature distribution generated and maintained by a scanning laser beam
-
M. S. Scholl, “Target temperature distribution generated and maintained by a scanning laser beam,” Appl. Opt. 21, 2146-2152 (1982).
-
(1982)
Appl. Opt.
, vol.21
, pp. 2146-2152
-
-
Scholl, M.S.1
-
6
-
-
0036606610
-
Remote temperature sensor employing erbium-doped silica fiber, Infrared Phys
-
J. Castrellon, G. Paez, and M. Strojnik, “Remote temperature sensor employing erbium-doped silica fiber,” Infrared Phys. Technol. 43, 219-222 (2002).
-
(2002)
Technol.
, vol.43
, pp. 219-222
-
-
Castrellon, J.1
Paez, G.2
Strojnik, M.3
-
8
-
-
0025692106
-
Commercial applications of fiber optic temperature measurement
-
R. T. Kersten, ed., Proc. SPIE
-
K. A. Wickersheim and W. D. Hyatt, “Commercial applications of fiber optic temperature measurement,” in Fiber Optic Sensors IV, R. T. Kersten, ed., Proc. SPIE 1267, 84-96 (1990).
-
(1990)
Fiber Optic Sensors IV
, vol.1267
, pp. 84-96
-
-
Wickersheim, K.A.1
Hyatt, W.D.2
-
9
-
-
0029343891
-
High dynamic range temperature point sensor using green fluorescence intensity ratio in erbium-doped silica fiber
-
E. Maurice, G. Monnom, D. B. Ostrowsky, and G. W. Baxter, “High dynamic range temperature point sensor using green fluorescence intensity ratio in erbium-doped silica fiber,” J. Lightwave Technol. 13, 1349-1353 (1995).
-
(1995)
J. Lightwave Technol.
, vol.13
, pp. 1349-1353
-
-
Maurice, E.1
Monnom, G.2
Ostrowsky, D.B.3
Baxter, G.W.4
-
10
-
-
0001631132
-
Radiometry
-
D. Malacara and B. Thompson, eds. (Marcel Dek-ker, New York
-
M. Strojnik and G. Paez, “Radiometry,” in Handbook of Optical Engineering, D. Malacara and B. Thompson, eds. (Marcel Dek-ker, New York, 2001), pp. 649-699.
-
(2001)
Handbook of Optical Engineering
, pp. 649-699
-
-
Strojnik, M.1
Paez, G.2
-
11
-
-
0033361299
-
Radiometric figures of merit of a fiber optic temperature sensor
-
M. Strojnik and B. F. Andresen, eds., Proc. SPIE
-
J. Castrellon and G. Paez, “Radiometric figures of merit of a fiber optic temperature sensor,” in Infrared Spaceborne Remote Sensing VII, M. Strojnik and B. F. Andresen, eds., Proc. SPIE 3759, 410-421 (1999).
-
(1999)
Infrared Spaceborne Remote Sensing VII
, pp. 3759410-3759421
-
-
Castrellon, J.1
Paez, G.2
-
13
-
-
0031359981
-
High-performance fiber-optic temperature sensor using low-coherence interferometry
-
H.-S. Choi, H. F. Taylor, and C. E. Lee, “High-performance fiber-optic temperature sensor using low-coherence interferometry,” Opt. Lett. 22, 1814-1816 (1997).
-
(1997)
Opt. Lett.
, vol.22
, pp. 1814-1816
-
-
Choi, H.-S.1
Taylor, H.F.2
Lee, C.E.3
-
14
-
-
0020908325
-
Fiber optic rare earth temperature sensors
-
SPIE Press, Bellingham, Wash
-
E. Snitzer, W. W. Morey, and W. H. Glenn, “Fiber optic rare earth temperature sensors,” in First International Conference on Optical Fibre Sensors, Vol. CDP01 (SPIE Press, Bellingham, Wash., 1983), pp. 79-82.
-
(1983)
First International Conference on Optical Fibre Sensors
, pp. 79-82
-
-
Snitzer, E.1
Morey, W.W.2
Glenn, W.H.3
-
15
-
-
0000550333
-
Optical-fiber temperature sensor based on upconversion-excited fluorescence
-
H. Berthou and C. K. Jorgensen, “Optical-fiber temperature sensor based on upconversion-excited fluorescence,” Opt. Lett. 15, 1100-1102 (1990).
-
(1990)
Opt. Lett.
, vol.15
, pp. 1100-1102
-
-
Berthou, H.1
Jorgensen, C.K.2
-
16
-
-
0022697176
-
Distributed temperature sensor using Nd3+-doped optical fibre
-
3+-doped optical fibre,” Electron. Lett. 22, 418-419 (1986).
-
(1986)
Electron. Lett.
, vol.22
, pp. 418-419
-
-
Farries, M.C.1
Fernmann, M.E.2
Laming, R.I.3
Poole, S.B.4
Payne, D.N.5
Leach, A.P.6
-
18
-
-
0032160925
-
Thulium-doped intrinsic fiber optic sensor for high temperature measurements (1100 °C)
-
Z.-Y. Zhang, K. T. V. Grattan, A. W. Palmer, and B. T. Meggitt, “Thulium-doped intrinsic fiber optic sensor for high temperature measurements (1100 °C),” Rev. Sci. Instrum. 69, 3210-3214 (1998).
-
(1998)
Rev. Sci. Instrum.
, vol.69
, pp. 3210-3214
-
-
Zhang, Z.-Y.1
Grattan, K.T.V.2
Palmer, A.W.3
Meggitt, B.T.4
-
21
-
-
0029344394
-
1.2-rm transitions in erbium-doped fibers: The possibility of quasi-distributed temperature sensors
-
E. Maurice, G. Monnom, D. B. Ostrowsky, and G. W. Baxter, “1.2-rm transitions in erbium-doped fibers: the possibility of quasi-distributed temperature sensors,” Appl. Opt. 34, 4196-4199 (1995).
-
(1995)
Appl. Opt
, vol.34
, pp. 4196-4199
-
-
Maurice, E.1
Monnom, G.2
Ostrowsky, D.B.3
Baxter, G.W.4
-
22
-
-
0029492028
-
Erbium-doped silica fibers for intrinsic fiber-optic temperature sensors
-
E. Maurice, G. Monnom, B. Dussardier, A. Saissy, D. B. Ostrowsky, and G. W. Baxter, “Erbium-doped silica fibers for intrinsic fiber-optic temperature sensors,” Appl. Opt. 34, 8019-8025 (1995).
-
(1995)
Appl. Opt.
, vol.34
, pp. 8019-8025
-
-
Maurice, E.1
Monnom, G.2
Dussardier, B.3
Saissy, A.4
Ostrowsky, D.B.5
Baxter, G.W.6
-
23
-
-
0001549343
-
Intermediate excited-state absorption in erbium-doped fiber strongly pumped at 980 nm
-
P. A. Krug, M. G. Sceats, G. R. Atkins, S. C. Guy, and S. B. Poole, “Intermediate excited-state absorption in erbium-doped fiber strongly pumped at 980 nm,” Opt. Lett. 16, 1976-1978 (1991).
-
(1991)
Opt. Lett.
, vol.16
, pp. 1976-1978
-
-
Krug, P.A.1
Sceats, M.G.2
Atkins, G.R.3
Guy, S.C.4
Poole, S.B.5
-
24
-
-
84959852073
-
Thermalization effects between upper levels of green fluorescence in Er-doped silica fibers
-
E. Maurice, G. Monnom, B. Dussardier, A. Saissy, D. B. Os-trowsky, and G. Baxter, “Thermalization effects between upper levels of green fluorescence in Er-doped silica fibers,” Opt. Lett. 19, 990-992 (1994).
-
(1994)
Opt. Lett.
, vol.19
, pp. 990-992
-
-
Maurice, E.1
Monnom, G.2
Dussardier, B.3
Saissy, A.4
Os-Trowsky, D.B.5
Baxter, G.6
-
26
-
-
0009776137
-
Optical amplifiers based on phosphorus co-doped rare-earth-doped optical fibres
-
R. A. Betts, F. F. Kuhl, T. M. Kwok, and G. F. Zheng, “Optical amplifiers based on phosphorus co-doped rare-earth-doped optical fibres,” Int. J. Optoelectron. 6, 47-64 (1991).
-
(1991)
Int. J. Optoelectron.
, vol.6
, pp. 47-64
-
-
Betts, R.A.1
Kuhl, F.F.2
Kwok, T.M.3
Zheng, G.F.4
-
27
-
-
0033114944
-
Thermal contrast detected with a thermal detector
-
G. Paez and M. S. Scholl, “Thermal contrast detected with a thermal detector,” Infrared Phys. Technol. 40,109-118 (1999).
-
(1999)
Infrared Phys. Technol
, vol.40
, pp. 109-118
-
-
Paez, G.1
Scholl, M.S.2
-
28
-
-
0033169432
-
Thermal contrast detected with a quantum detector
-
G. Paez and M. S. Scholl, “Thermal contrast detected with a quantum detector,” Infrared Phys. Technol. 40, 261-266 (1999).
-
(1999)
Infrared Phys. Technol
, vol.40
, pp. 261-266
-
-
Paez, G.1
Scholl, M.S.2
|