-
1
-
-
0003796630
-
-
Academic Press, New York
-
R. Adams, "Sobolev Spaces," Academic Press, New York, 1975.
-
(1975)
Sobolev Spaces
-
-
Adams, R.1
-
4
-
-
0033140571
-
Lack of time-delay robustness for stabilization of a structural acoustics model
-
G. Avalos, I. Lasiecka and R. Rebarber, Lack of time-delay robustness for stabilization of a structural acoustics model. SIAM J. Control Optim. 37 (1999), no. 5, 1394-1418.
-
(1999)
SIAM J. Control Optim.
, vol.37
, Issue.5
, pp. 1394-1418
-
-
Avalos, G.1
Lasiecka, I.2
Rebarber, R.3
-
6
-
-
0000929011
-
A control problem for Burgers' equation with bounded input/output
-
J. A. Burns and S. Kang, A control problem for Burgers' equation with bounded input/output, Nonlinear Dynamics 2 (1992), 235-262.
-
(1992)
Nonlinear Dynamics
, vol.2
, pp. 235-262
-
-
Burns, J.A.1
Kang, S.2
-
7
-
-
0003025898
-
Boundary control for a viscous Burgers' equation
-
H. T. Banks, R. H. Fabiano and K. Ito Eds., SIAM
-
C. I. Byrnes, D. S. Gilliam and V. I. Shubov, Boundary control for a viscous Burgers' equation, in "Identification Control for Systems Governed by Partial Differential Equations", H. T. Banks, R. H. Fabiano and K. Ito Eds., SIAM (1993), 171-185.
-
(1993)
Identification Control for Systems Governed by Partial Differential Equations
, pp. 171-185
-
-
Byrnes, C.I.1
Gilliam, D.S.2
Shubov, V.I.3
-
8
-
-
0027530488
-
Feedback control for unsteady flow and its application to the stochastic Burgers' equation
-
H. Choi, R. Temam, P. Moin and J. Kim, Feedback control for unsteady flow and its application to the stochastic Burgers' equation, J. Fluid Mech. 253 (1993), 509-543.
-
(1993)
J. Fluid Mech.
, vol.253
, pp. 509-543
-
-
Choi, H.1
Temam, R.2
Moin, P.3
Kim, J.4
-
9
-
-
0024002279
-
Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks
-
R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks. SIAM J. Control Optim. 26 (1988), no. 3, 697-713.
-
(1988)
SIAM J. Control Optim.
, vol.26
, Issue.3
, pp. 697-713
-
-
Datko, R.1
-
10
-
-
0042388608
-
The destabilizing effect of delays on certain vibrating systems
-
Advances in computing and control (Baton Rouge, LA, 1988), Springer, Berlin-New York
-
R. Datko, The destabilizing effect of delays on certain vibrating systems. Advances in computing and control (Baton Rouge, LA, 1988), 324-330, Lecture Notes in Control and Inform. Sci., 130, Springer, Berlin-New York, 1989.
-
(1989)
Lecture Notes in Control and Inform. Sci.
, vol.130
, pp. 324-330
-
-
Datko, R.1
-
11
-
-
0027146799
-
Two examples of ill-posedness with respect to small time delays in stabilized elastic systems
-
R. Datko, Two examples of ill-posedness with respect to small time delays in stabilized elastic systems. IEEE Trans. Automat. Control 38 (1993), no. 1, 163-166.
-
(1993)
IEEE Trans. Automat. Control
, vol.38
, Issue.1
, pp. 163-166
-
-
Datko, R.1
-
12
-
-
0022463140
-
An example on the effect of time delays in boundary feedback stabilization of wave equations
-
R. Datko, J. Lagnese and M.P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations. SIAM J. Control Optim. 24 (1986), no. 1, 152-156.
-
(1986)
SIAM J. Control Optim.
, vol.24
, Issue.1
, pp. 152-156
-
-
Datko, R.1
Lagnese, J.2
Polis, M.P.3
-
13
-
-
0026220545
-
Some second-order vibrating systems cannot tolerate small time delays in their damping
-
R. Datko and Y.C. You, Some second-order vibrating systems cannot tolerate small time delays in their damping. J. Optim. Theory Appl. 70 (1991), no. 3, 521-537.
-
(1991)
J. Optim. Theory Appl.
, vol.70
, Issue.3
, pp. 521-537
-
-
Datko, R.1
You, Y.C.2
-
14
-
-
0002257093
-
Convergence to equilibrium for delay-diffusion equations with small delay
-
G. Friesecke, Convergence to equilibrium for delay-diffusion equations with small delay, J. Dynamics and Differential Equations 5 (1993), 89-103.
-
(1993)
J. Dynamics and Differential Equations
, vol.5
, pp. 89-103
-
-
Friesecke, G.1
-
15
-
-
38249012325
-
Exponentially growing solutions for a delay-diffusion equation with negative feedback
-
G. Friesecke, Exponentially growing solutions for a delay-diffusion equation with negative feedback, J. Differential Equations 98 (1992), 1-18.
-
(1992)
J. Differential Equations
, vol.98
, pp. 1-18
-
-
Friesecke, G.1
-
16
-
-
0028424894
-
A dissipative feedback control for systems arising in fluid dynamics
-
K. Ito and S. Kang, A dissipative feedback control for systems arising in fluid dynamics, SIAM J. Control Optim. 32 (1994), 831-854.
-
(1994)
SIAM J. Control Optim.
, vol.32
, pp. 831-854
-
-
Ito, K.1
Kang, S.2
-
17
-
-
0001705992
-
Viscous scalar conservation law with nonlinear flux feedback and global attractors
-
K. Ito and Y. Yan, Viscous scalar conservation law with nonlinear flux feedback and global attractors, J. Math. Anal. Appl. 227 (1998), 271-299.
-
(1998)
J. Math. Anal. Appl.
, vol.227
, pp. 271-299
-
-
Ito, K.1
Yan, Y.2
-
18
-
-
0001054808
-
On global stabilization of Burgers' equation by boundary control
-
M. Krstić, On global stabilization of Burgers' equation by boundary control, Systems & Control Letters 37 (1999), 123-141.
-
(1999)
Systems & Control Letters
, vol.37
, pp. 123-141
-
-
Krstić, M.1
-
19
-
-
34250129291
-
Unified theory for abstract parabolic boundary problems- a semigroups approach
-
I. Lasiecka, Unified theory for abstract parabolic boundary problems- a semigroups approach, Appl. Math. Optim. 6 (1980), 287-333.
-
(1980)
Appl. Math. Optim.
, vol.6
, pp. 287-333
-
-
Lasiecka, I.1
-
20
-
-
0041386461
-
The effect of small time delays in the feedbacks on boundary stabilization
-
X. J. Li and K. S. Liu, The effect of small time delays in the feedbacks on boundary stabilization, Science in China 36 (1993), 1435-1443.
-
(1993)
Science in China
, vol.36
, pp. 1435-1443
-
-
Li, X.J.1
Liu, K.S.2
-
22
-
-
0042388607
-
Backstepping boundary control of of Burgers' equation with actuator dynamics
-
W. J. Liu and M. Krstić, Backstepping boundary control of of Burgers' equation with actuator dynamics, Systems and Control Letters 41 (4) 2000, 291-303.
-
(2000)
Systems and Control Letters
, vol.41
, Issue.4
, pp. 291-303
-
-
Liu, W.J.1
Krstić, M.2
-
23
-
-
0001591165
-
Global boundedness for a delay differential equation
-
S. Luckhaus, Global boundedness for a delay differential equation, Trans. Amer. Math. Soc. 294 (1986), 767-774.
-
(1986)
Trans. Amer. Math. Soc.
, vol.294
, pp. 767-774
-
-
Luckhaus, S.1
-
24
-
-
0030622784
-
Distributed and boundary control of the viscous Burgers' equation
-
H. V. Ly, K. D. Mease and E. S. Titi, Distributed and boundary control of the viscous Burgers' equation, Numer. Funct. Anal. Optim. 18 (1997), 143-188.
-
(1997)
Numer. Funct. Anal. Optim.
, vol.18
, pp. 143-188
-
-
Ly, H.V.1
Mease, K.D.2
Titi, E.S.3
-
25
-
-
0041386460
-
Reaction-diffusion equations with nonlinear boundary delay
-
S. M. Oliva, Reaction-diffusion equations with nonlinear boundary delay, J. Dynamics and Differential Equations 11 (1999), 279-296.
-
(1999)
J. Dynamics and Differential Equations
, vol.11
, pp. 279-296
-
-
Oliva, S.M.1
-
26
-
-
38149146959
-
Instability of homogeneous periodic solutions of parabolic-delay equations
-
Luiz A.F. De Oliveira, Instability of homogeneous periodic solutions of parabolic-delay equations, J. Differential Equations 109 (1994), 42-76.
-
(1994)
J. Differential Equations
, vol.109
, pp. 42-76
-
-
De Oliveira, L.A.F.1
-
29
-
-
0033410096
-
A difference-differential analogue of the Burgers equation and some models of economic development
-
Gennadi M. Henkin, and Victor M. Polterovich, A difference-differential analogue of the Burgers equation and some models of economic development, Discrete Contin. Dynam. Systems, vol. 5 (1999), 697-728.
-
(1999)
Discrete Contin. Dynam. Systems
, vol.5
, pp. 697-728
-
-
Henkin, G.M.1
Polterovich, V.M.2
|