-
1
-
-
0003692531
-
-
edited by B. J. Berne, G. Cicotti, and D. F. Coker (World Scientific, Singapore)
-
Quantum and Classical Dynamics in Condensed Phase Simulations, edited by B. J. Berne, G. Cicotti, and D. F. Coker (World Scientific, Singapore, 1998).
-
(1998)
Quantum and Classical Dynamics in Condensed Phase Simulations
-
-
-
3
-
-
0042290834
-
-
edited by W. Domcke, D. R. Yarkony, and H. Köppel (World Scientific, Singapore)
-
G. Stock and M. Thoss, Conical Intersections: Electronic Structure, Dynamics and Spectroscopy, edited by W. Domcke, D. R. Yarkony, and H. Köppel (World Scientific, Singapore, 2003).
-
Conical Intersections: Electronic Structure, Dynamics and Spectroscopy
-
-
Stock, G.1
Thoss, M.2
-
12
-
-
45849155962
-
-
M. Pletyukhov, C. Amann, M. Mehta, and M. Brack, Phys. Rev. Lett. 89, 116601 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 116601
-
-
Pletyukhov, M.1
Amann, C.2
Mehta, M.3
Brack, M.4
-
25
-
-
0042492830
-
-
edited by G. Casati, I. Guarneri, and U. Smilansky (North-Holland, Amsterdam)
-
B. Eckhardt, in Periodic Orbit Theory, in Proceedings of the International School of Physics, Course CXIX, edited by G. Casati, I. Guarneri, and U. Smilansky (North-Holland, Amsterdam, 1993).
-
(1993)
Periodic Orbit Theory, in Proceedings of the International School of Physics, Course CXIX
-
-
Eckhardt, B.1
-
27
-
-
0001587660
-
-
M. P. Jacobson, C. Jung, H. S. Taylor, and R. W. Field, J. Chem. Phys. 111, 600 (1999).
-
(1999)
J. Chem. Phys.
, vol.111
, pp. 600
-
-
Jacobson, M.P.1
Jung, C.2
Taylor, H.S.3
Field, R.W.4
-
33
-
-
0042290834
-
-
edited by W. Domcke, D. R. Yarkony, and H. Köppel (World Scientific, Singapore)
-
Conical Intersections: Electronic Structure, Dynamics and Spectroscopy, edited by W. Domcke, D. R. Yarkony, and H. Köppel (World Scientific, Singapore, 2003).
-
(2003)
Conical Intersections: Electronic Structure, Dynamics and Spectroscopy
-
-
-
44
-
-
0002086460
-
-
For a recent review see. e.g., T. Brixner, N. Damrauer, and G. Gerber, Adv. At., Mol., Opt. Phys. 46, 1 (2001).
-
(2001)
Adv. At., Mol., Opt. Phys.
, vol.46
, pp. 1
-
-
Brixner, T.1
Damrauer, N.2
Gerber, G.3
-
45
-
-
0042993616
-
-
note
-
2 harmonic-oscillator states for the remaining two vibrational degress of freedom. This results in a systems of 240 000 coupled first-order differential equations, which are solved using a Runge-Kutta-Merson scheme with adaptive step size.
-
-
-
-
47
-
-
0041991964
-
-
note
-
In the case E = 0, the vibrational bands of the energy distribution are due to the tuning mode, while the low-energy part of the distribution are due to the tuning mode, while the low-energy part of the distribution for E <0 is caused by vibronic intensity borrowing.
-
-
-
-
48
-
-
0042492824
-
-
note
-
5 trajectories. Details of the classical computational methods can be found, e.g., in Refs. 3 and 28.
-
-
-
-
49
-
-
0001677889
-
-
For a general discussion and an overview of existing methods see, for example, Y. Guo, D. L. Thompson, and T. D. Sewell, J. Chem. Phys. 104, 576 (1996).
-
(1996)
J. Chem. Phys.
, vol.104
, pp. 576
-
-
Guo, Y.1
Thompson, D.L.2
Sewell, T.D.3
-
58
-
-
0041991961
-
-
note
-
0/2I=0.026 eV.
-
-
-
-
59
-
-
0041991962
-
-
note
-
Note that the obvious ansatz of a separation of time scales does not help here, since this would correspond to a Born-Oppenheimer-type of approximation, which cannot account for the nonadiabatic dynamics of the system.
-
-
-
-
61
-
-
0042993611
-
-
note
-
Although not a true periodic orbit, some quasiperiodic orbits were found to persist for hundreds of periods.
-
-
-
|