-
5
-
-
4243938937
-
-
M. F. Herman and E. Kluk, Chem. Phys. 91, 27 (1984); E. Kluk, M. F. Herman, and H. L. Davis, J. Chem. Phys. 84, 326 (1986).
-
(1984)
Chem. Phys.
, vol.91
, pp. 27
-
-
Herman, M.F.1
Kluk, E.2
-
6
-
-
36549094769
-
-
M. F. Herman and E. Kluk, Chem. Phys. 91, 27 (1984); E. Kluk, M. F. Herman, and H. L. Davis, J. Chem. Phys. 84, 326 (1986).
-
(1986)
J. Chem. Phys.
, vol.84
, pp. 326
-
-
Kluk, E.1
Herman, M.F.2
Davis, H.L.3
-
7
-
-
5344240580
-
-
E. J. Heller, J. Chem. Phys. 94, 2724 (1991); M. A. Sepulveda and E. J. Heller, ibid. 101, 8004 (1984).
-
(1991)
J. Chem. Phys.
, vol.94
, pp. 2724
-
-
Heller, E.J.1
-
16
-
-
0000264317
-
-
A. R. Walton and D. E. Manolopoulos, Chem. Phys. Lett. 244, 443 (1995); Mol. Phys. 87, 961 (1996).
-
(1996)
Mol. Phys.
, vol.87
, pp. 961
-
-
-
31
-
-
0004145430
-
-
Dover, New York
-
A. Erdelyi, Asymptotic Expansions (Dover, New York, 1966); G. F. Carrier, M. Krook, and C. E. Pearson, Functions of a Complex Variable: Theory and Technique (McGraw-Hill, New York, 1966).
-
(1966)
Asymptotic Expansions
-
-
Erdelyi, A.1
-
32
-
-
0003528989
-
-
McGraw-Hill, New York
-
A. Erdelyi, Asymptotic Expansions (Dover, New York, 1966); G. F. Carrier, M. Krook, and C. E. Pearson, Functions of a Complex Variable: Theory and Technique (McGraw-Hill, New York, 1966).
-
(1966)
Functions of a Complex Variable: Theory and Technique
-
-
Carrier, G.F.1
Krook, M.2
Pearson, C.E.3
-
39
-
-
36149014576
-
-
C. Eckart, Phys. Rev. 35, 1303 (1930); L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Pergamon, Oxford, 1965), p. 79.
-
(1930)
Phys. Rev.
, vol.35
, pp. 1303
-
-
Eckart, C.1
-
40
-
-
36149014576
-
-
Pergamon, Oxford
-
C. Eckart, Phys. Rev. 35, 1303 (1930); L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Pergamon, Oxford, 1965), p. 79.
-
(1965)
Quantum Mechanics: Non-Relativistic Theory
, pp. 79
-
-
Landau, L.D.1
Lifshitz, E.M.2
-
41
-
-
85033173509
-
-
Since, as described below, steepest descent paths are "repelled" by additional saddles, it is very unlikely that the number of intermediate maxima would be greater than one
-
Since, as described below, steepest descent paths are "repelled" by additional saddles, it is very unlikely that the number of intermediate maxima would be greater than one.
-
-
-
-
42
-
-
0003851729
-
-
Natl. Bureau of Standards, Washington, D.C.
-
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, edited by M. Abramowitz and I. A. Stegun (Natl. Bureau of Standards, Washington, D.C., 1966).
-
(1966)
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
-
-
Abramowitz, M.1
Stegun, I.A.2
-
43
-
-
85033163705
-
-
note
-
2 can be expressed as an integral along this new SD path plus an integral along the SD path through the second caustic, and this latter integral turns out to be negligibly small. Thus, we do not distinguish between this situation and case II.
-
-
-
-
45
-
-
0003474751
-
-
Cambridge University Press, Cambridge
-
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN (Cambridge University Press, Cambridge, 1992).
-
(1992)
Numerical Recipes in FORTRAN
-
-
Press, W.H.1
Teukolsky, S.A.2
Vetterling, W.T.3
Flannery, B.P.4
-
47
-
-
5344221205
-
-
For example, J. R. Klauder, Phys. Rev. Lett. 56, 897 (1986); 59, 748 (1987).
-
(1987)
Phys. Rev. Lett.
, vol.59
, pp. 748
-
-
-
48
-
-
85033159759
-
-
This can be accomplished by applying Eq. (46) of Ref. 7
-
This can be accomplished by applying Eq. (46) of Ref. 7.
-
-
-
-
50
-
-
0001012882
-
-
E. J. Heller, J. Chem. Phys. 62, 1544 (1975); 65, 4979 (1976).
-
(1976)
J. Chem. Phys.
, vol.65
, pp. 4979
-
-
-
51
-
-
0003498504
-
-
Academic, New York, Eq. (2.452.2)
-
I. S. Gradshteyn and I. W. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1965), Eq. (2.452.2).
-
(1965)
Table of Integrals, Series, and Products
-
-
Gradshteyn, I.S.1
Ryzhik, I.W.2
|