-
1
-
-
0000623799
-
Une propiété métriqé du mouvement brownien
-
Kaufman, R., Une propiété métriqé du mouvement brownien, C. R. Acad. Sci. Paris, Sér A, 1969, 268: 727.
-
(1969)
C. R. Acad. Sci. Paris, Sér A
, vol.268
, pp. 727
-
-
Kaufman, R.1
-
2
-
-
84974022175
-
The measure theory of random fractal
-
Taylor, S. J., The measure theory of random fractal, Math., Proc. Cambridge Phil. Soc., 1986, 100(3): 382.
-
(1986)
Math., Proc. Cambridge Phil. Soc.
, vol.100
, Issue.3
, pp. 382
-
-
Taylor, S.J.1
-
3
-
-
0042226489
-
The random fractal
-
in Chinese
-
Hu Dihe, Liu Luqin, Xiao Yimin et al., The random fractal, Advances in Mathematics (in Chinese), 1995, 24(3): 193.
-
(1995)
Advances in Mathematics
, vol.24
, Issue.3
, pp. 193
-
-
Hu, D.1
Liu, L.2
Xiao, Y.3
-
4
-
-
0040228961
-
Some dimension theorems for the sample functions of stable processes
-
Hawkes, J., Some dimension theorems for the sample functions of stable processes, Indiana Univ. Math. J., 1971, 20: 733.
-
(1971)
Indiana Univ. Math. J.
, vol.20
, pp. 733
-
-
Hawkes, J.1
-
5
-
-
0009151523
-
Uniform dimension results for processes with independent increments
-
Hawkes, J., Pruitt, W. E., Uniform dimension results for processes with independent increments, Z. Wahrsch., 1974, 28: 277.
-
(1974)
Z. Wahrsch.
, vol.28
, pp. 277
-
-
Hawkes, J.1
Pruitt, W.E.2
-
6
-
-
84972508787
-
A dimension theorem for sample functions of stable processes
-
Blumenthal, R. M., Getoor, R. K. A dimension theorem for sample functions of stable processes, Illinois Math. J., 1960, 4: 370.
-
(1960)
Illinois Math. J.
, vol.4
, pp. 370
-
-
Blumenthal, R.M.1
Getoor, R.K.2
-
7
-
-
0002672495
-
Local nondeterminism and Hausdorff dimension
-
Serminar on Stochastic Processes (eds. Cinlor E, Chung K L., Getoor R K,), Boston, Birkhäuser
-
Monrad, D., Pitt, L. D., Local nondeterminism and Hausdorff dimension, Progress in Probability and Statistics, Serminar on Stochastic Processes (eds. Cinlor E, Chung K L., Getoor R K,), Boston, Birkhäuser: 1986, 163-189.
-
(1986)
Progress in Probability and Statistics
, pp. 163-189
-
-
Monrad, D.1
Pitt, L.D.2
-
8
-
-
0043228684
-
Uniform dimension results for the Brownian sheet
-
Mountford, T. S., Uniform dimension results for the Brownian sheet, Ann. Probab., 1989, 17: 1454.
-
(1989)
Ann. Probab.
, vol.17
, pp. 1454
-
-
Mountford, T.S.1
-
9
-
-
85034126938
-
A new proof of the uniform dimension results for multi-parameter Wiener processes
-
natural science (in Chinese)
-
Liu Huonan, Zhuang Xingwu, A new proof of the uniform dimension results for multi-parameter Wiener processes, Fujian Teachers Univ. J. (natural science) (in Chinese), 1994, 10(4): 27.
-
(1994)
Fujian Teachers Univ. J.
, vol.10
, Issue.4
, pp. 27
-
-
Huonan, L.1
Xingwu, Z.2
-
10
-
-
0000382335
-
Uniform measure results for the image of subset under Brownian motion
-
Perkins, E. A., Taylor, S. J., Uniform measure results for the image of subset under Brownian motion, Probab. Th. Rel. Fields, 1987, 76(3): 257.
-
(1987)
Probab. Th. Rel. Fields
, vol.76
, Issue.3
, pp. 257
-
-
Perkins, E.A.1
Taylor, S.J.2
-
11
-
-
0000746459
-
Path properties of index-β stable fields
-
Nolan, J. P., Path properties of index-β stable fields, Ann. Probab., 1988, 16(4): 1596.
-
(1988)
Ann. Probab.
, vol.16
, Issue.4
, pp. 1596
-
-
Nolan, J.P.1
-
12
-
-
51649133752
-
Dimension properties of sample paths of self-similar process
-
Xiao Yimin, Lin Huonan, Dimension properties of sample paths of self-similar process, Acta Math. Sinica, New Series, 1994, 10(3): 289.
-
(1994)
Acta Math. Sinica, New Series
, vol.10
, Issue.3
, pp. 289
-
-
Xiao, Y.1
Lin, H.2
-
13
-
-
0001287276
-
Sample function properties of multi-parameter stable processes
-
Ehm, W., Sample function properties of multi-parameter stable processes, Z. Wahrsch, 1981, 56(2): 195.
-
(1981)
Z. Wahrsch
, vol.56
, Issue.2
, pp. 195
-
-
Ehm, W.1
-
14
-
-
0013309115
-
The uniform dimension of the level sets of a Brownian sheet
-
Adler, R. J., The uniform dimension of the level sets of a Brownian sheet, Ann. Probab., 1978, 6(2): 509.
-
(1978)
Ann. Probab.
, vol.6
, Issue.2
, pp. 509
-
-
Adler, R.J.1
|