-
1
-
-
0029147925
-
-
(a) Chernomordik, L.; Kozlov, M. M. Zimmerberg, J. J. Membr. Biol. 1995, 146, 1-14.
-
(1995)
J. Membr. Biol.
, vol.146
, pp. 1-14
-
-
Chernomordik, L.1
Kozlov, M.M.2
Zimmerberg, J.3
-
3
-
-
0033784615
-
-
(c) Lentz, B. R.; Malinin, V.; Haque, M. E.; Evans, K. Curr. Opin. Cell Biol. 2000, 10, 607-615.
-
(2000)
Curr. Opin. Cell Biol.
, vol.10
, pp. 607-615
-
-
Lentz, B.R.1
Malinin, V.2
Haque, M.E.3
Evans, K.4
-
5
-
-
0023636677
-
-
(b) Chernomordik, L. V.; Melikyan, G. B.; Chizmadzhev, Y. A. Biochim. Biophys. Acta 1987, 906, 309-352.
-
(1987)
Biochim. Biophys. Acta
, vol.906
, pp. 309-352
-
-
Chernomordik, L.V.1
Melikyan, G.B.2
Chizmadzhev, Y.A.3
-
7
-
-
0035902367
-
-
(a) Shelley, J. C.; Shelley, M. Y.; Reeder, R. C.; Bandyopadhyay, S.; Klein, M. L. J. Phys. Chem. B 2001, 105, 4464-4470.
-
(2001)
J. Phys. Chem. B
, vol.105
, pp. 4464-4470
-
-
Shelley, J.C.1
Shelley, M.Y.2
Reeder, R.C.3
Bandyopadhyay, S.4
Klein, M.L.5
-
8
-
-
0000283071
-
-
(b) Goetz, R.; Gompper, G.; Lipowsky, R. Phys. Rev. Lett. 1999, 82, 221-224.
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 221-224
-
-
Goetz, R.1
Gompper, G.2
Lipowsky, R.3
-
9
-
-
0041906879
-
-
note
-
The pairwise interactions between the CG atoms are modeled by Lennard-Jones (LJ) interactions. They range from weak (hydrophobic interactions) to strong (polar interactions) with three levels in between. A screened Coulombic interaction is used for the electrostatic interaction between the zwitterionic headgroups. Both LJ and Coulombic interactions are only short-ranged, using a shift-based cutoff of 1.2 nm. Soft springs between bonded pairs keep the molecule together. Angle potentials provide the adequate stiffness for the lipid tails.
-
-
-
-
11
-
-
0035789518
-
-
The systems are simulated using the GROMACS software (Lindahl, E.; Hess, B.; Spoel, D. J. Mol. Mod. 2001, 7, 306) with a time step of t = 200 fs. The time scale in the CG model is scaled to reproduce the diffusion rate of lipids and water. Constant temperature (T = 300) and isotropic pressure (P = 1 atm) conditions were applied which keep the lipids in the biologically relevant fluid state.
-
(2001)
J. Mol. Mod.
, vol.7
, pp. 306
-
-
Lindahl, E.1
Hess, B.2
Spoel, D.3
-
12
-
-
0020468317
-
-
Experimentally, smallest vesicles obtained are ∼20 nm diameter. Cornell, B. A.; Fletcher, G. C.; Middlehurst, J.; Separovic, F. Biochim. Biophys. Acta 1982, 690, 15.
-
(1982)
Biochim. Biophys. Acta
, vol.690
, pp. 15
-
-
Cornell, B.A.1
Fletcher, G.C.2
Middlehurst, J.3
Separovic, F.4
-
13
-
-
0041405749
-
-
note
-
The resulting vesicle slowly relaxes (∼100 ns) into a tubular structure, a process limited by the rate of adsorption of external water. Lateral diffusion of the lipids causes mixing of the lipids in both monolayers, but not between the inner and outer monolayers. Lipid flipflops are absent on the time scale of the simulations, preventing the tubular vesicle from becoming spherical.
-
-
-
-
16
-
-
0037040015
-
-
(b) Müller, M.; Katsov, K.; Schick, M. J. Chem. Phys. 2002, 116, 2342-2345.
-
(2002)
J. Chem. Phys.
, vol.116
, pp. 2342-2345
-
-
Müller, M.1
Katsov, K.2
Schick, M.3
-
19
-
-
0031056337
-
-
(c) Lentz, B. R.; Talbot, W.; Lee, J.; Zheng, L. X. Biochemistry 1997, 36, 2076-2083.
-
(1997)
Biochemistry
, vol.36
, pp. 2076-2083
-
-
Lentz, B.R.1
Talbot, W.2
Lee, J.3
Zheng, L.X.4
|