-
1
-
-
0042735330
-
The Fibonacci shuffle tree
-
G.E. Bergum, A.N. Philippou, A.F. Horadam (Eds.), Kluwer Academic Publishers, Dordrecht
-
P.G. Anderson, The Fibonacci shuffle tree, in: G.E. Bergum, A.N. Philippou, A.F. Horadam (Eds.), Applications of Fibonacci Numbers, Vol. 7, Kluwer Academic Publishers, Dordrecht, 1998, pp. 9-16.
-
(1998)
Applications of Fibonacci Numbers
, vol.7
, pp. 9-16
-
-
Anderson, P.G.1
-
2
-
-
0042234348
-
Über die Diskrepanz mehrdimensionaler Folgen mod. 1
-
E. Hlawka, Über die Diskrepanz mehrdimensionaler Folgen mod. 1, Math. Z. 77 (1961) 273-284.
-
(1961)
Math. Z.
, vol.77
, pp. 273-284
-
-
Hlawka, E.1
-
3
-
-
0041847805
-
2 discrepancy
-
Technical Report 55, Department of Mathematics, The University of Waikato, Hamilton, New Zealand
-
2 discrepancy, Technical Report 55, Department of Mathematics, The University of Waikato, Hamilton, New Zealand, 1997.
-
(1997)
-
-
Joe, S.1
-
4
-
-
0003657590
-
-
Sorting and Searching, Addison-Wesley, Reading, MA
-
D.E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and Searching, Addison-Wesley, Reading, MA, 1973.
-
(1973)
The Art of Computer Programming
, vol.3
-
-
Knuth, D.E.1
-
5
-
-
0032303389
-
Generating quasi-random paths for stochastic processes
-
W.J. Morokoff, Generating quasi-random paths for stochastic processes, SIAM Rev. 40 (4) (1998) 765-788.
-
(1998)
SIAM Rev.
, vol.40
, Issue.4
, pp. 765-788
-
-
Morokoff, W.J.1
-
6
-
-
4244153703
-
Detecting near linearity in high dimensions
-
Technical Report, Stanford University, Statistics Department
-
A.B. Owen, Detecting near linearity in high dimensions, Technical Report, Stanford University, Statistics Department, 1998.
-
(1998)
-
-
Owen, A.B.1
-
7
-
-
0036222401
-
The Brownian bridge does not offer a consistent advantage in quasi-Monte Carlo integration
-
A. Papageorgiou, The Brownian bridge does not offer a consistent advantage in quasi-Monte Carlo integration, J. Complexity 18 (2002) 1-16.
-
(2002)
J. Complexity
, vol.18
, pp. 1-16
-
-
Papageorgiou, A.1
-
8
-
-
0008983046
-
Computing high-dimensional integrals with applications to finance
-
Joint Summer Research Conference on Continuous Algorithms and Complexity, Mount Holyoke College
-
S.H. Paskov, Computing high-dimensional integrals with applications to finance, Joint Summer Research Conference on Continuous Algorithms and Complexity, Mount Holyoke College, 1994.
-
(1994)
-
-
Paskov, S.H.1
-
9
-
-
0001922673
-
New methodologies for valuing derivatives
-
S. Pliska, M. Dempster (Eds.), Isaac Newton Institute, Cambridge University Press, Cambridge
-
S.H. Paskov, New methodologies for valuing derivatives, in: S. Pliska, M. Dempster (Eds.), Mathematics of Derivative Securities, Isaac Newton Institute, Cambridge University Press, Cambridge, 1996.
-
(1996)
Mathematics of Derivative Securities
-
-
Paskov, S.H.1
-
10
-
-
0029692966
-
Faster valuation of financial derivatives
-
S.H. Paskov, J.F. Traub, Faster valuation of financial derivatives, J. Portfolio Management 22 (1) (1995) 113-120.
-
(1995)
J. Portfolio Management
, vol.22
, Issue.1
, pp. 113-120
-
-
Paskov, S.H.1
Traub, J.F.2
-
11
-
-
0042234328
-
Qmc integration - Beating intractability by weighting the coordinate directions
-
K.-T. Fang, F.J. Hickernell, H. Niederreiter (Eds.), Springer, Berlin
-
I.H. Sloan, Qmc integration - beating intractability by weighting the coordinate directions, in: K.-T. Fang, F.J. Hickernell, H. Niederreiter (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 2000, Springer, Berlin, 2002, pp. 103-123.
-
(2002)
Monte Carlo and Quasi-Monte Carlo Methods 2000
, pp. 103-123
-
-
Sloan, I.H.1
-
12
-
-
0002522806
-
When are quasi-Monte Carlo algorithms efficient for high-dimensional integrals?
-
I. Sloan, H. Woźniakowski, When are quasi-Monte Carlo algorithms efficient for high-dimensional integrals?, J. Complexity 14 (1998) 1-33.
-
(1998)
J. Complexity
, vol.14
, pp. 1-33
-
-
Sloan, I.1
Woźniakowski, H.2
-
15
-
-
0002548979
-
Some applications of multidimensional integration by parts
-
S.K. Zaremba, Some applications of multidimensional integration by parts, Ann. Polon. Math. 21 (1968) 85-96.
-
(1968)
Ann. Polon. Math.
, vol.21
, pp. 85-96
-
-
Zaremba, S.K.1
|