메뉴 건너뛰기




Volumn 66, Issue 217, 1997, Pages 193-206

The trade-off between regularity and stability in Tikhonov regularization

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0042131471     PISSN: 00255718     EISSN: None     Source Type: Journal    
DOI: 10.1090/s0025-5718-97-00811-9     Document Type: Article
Times cited : (24)

References (27)
  • 1
    • 0012372152 scopus 로고
    • Review of Fredholm equations of the first kind
    • (R.S. Anderssen, F. de Hoog and M.A. Lucas, eds.), Sijthoff & Noordhoff, Alphen aan den Rijn, Germantown, MR 82a:45002
    • F. de Hoog, Review of Fredholm equations of the first kind, In Application and Numerical Solution of Integral Equations, (R.S. Anderssen, F. de Hoog and M.A. Lucas, eds.), Sijthoff & Noordhoff, Alphen aan den Rijn, Germantown, 1980, pp. 119-134. MR 82a:45002
    • (1980) Application and Numerical Solution of Integral Equations , pp. 119-134
    • De Hoog, F.1
  • 3
    • 0041765212 scopus 로고
    • Optimal discrepancy principles for the Tikhonov regularization of integral equations of the first kind
    • (G. Hämmerlin and K.-H. Hoffmann, eds.), Birkhäuser, Basel, Boston, Stuttgart, CMP 19:10
    • H.W. Engl and A. Neubauer. Optimal discrepancy principles for the Tikhonov regularization of integral equations of the first kind, In Constructive Methods for the Practical Treatment of Integral Equations, (G. Hämmerlin and K.-H. Hoffmann, eds.), Birkhäuser, Basel, Boston, Stuttgart, 1985, pp. 120-141. CMP 19:10
    • (1985) Constructive Methods for the Practical Treatment of Integral Equations , pp. 120-141
    • Engl, H.W.1    Neubauer, A.2
  • 4
    • 0028531515 scopus 로고
    • Parameter choice by discrepancy principles for ill-posed problems leading to optimal convergence rates
    • MR 95i:65094
    • S. George and M.T. Nair. Parameter choice by discrepancy principles for ill-posed problems leading to optimal convergence rates. J. Optim. Theory Appl., 83 (1994), 217-222. MR 95i:65094
    • (1994) J. Optim. Theory Appl. , vol.83 , pp. 217-222
    • George, S.1    Nair, M.T.2
  • 8
    • 84976001025 scopus 로고
    • The saturation phenomena for Tikhonov regularization
    • MR 84k:47011
    • C. W. Groetsch and J. T. King The saturation phenomena for Tikhonov regularization. J. Austral. Math. Soc. ( Series A) 35 (1983), 254-262. MR 84k:47011
    • (1983) J. Austral. Math. Soc. ( Series A) , vol.35 , pp. 254-262
    • Groetsch, C.W.1    King, J.T.2
  • 10
    • 0026939558 scopus 로고
    • An optimal order regularization method which does not use additional smoothness assumptions
    • MR 93j:65090
    • M. Hegland. An optimal order regularization method which does not use additional smoothness assumptions. SIAM J. Numer. Anal. 29 (1992), 1446-1461. MR 93j:65090
    • (1992) SIAM J. Numer. Anal. , vol.29 , pp. 1446-1461
    • Hegland, M.1
  • 11
    • 0000554469 scopus 로고
    • Variable Hilbert Scales and their Interpolation Inequalities with Applications to Tikhonov Regularization
    • CMP 96:09
    • M. Hegland, Variable Hilbert Scales and their Interpolation Inequalities with Applications to Tikhonov Regularization, Applicable Anal. 59 (1995), 207-223. CMP 96:09
    • (1995) Applicable Anal. , vol.59 , pp. 207-223
    • Hegland, M.1
  • 13
  • 14
    • 0018999755 scopus 로고
    • Regularization with differential operators. I: General theory
    • MR 83j:65062a
    • J. Locker and P. M. Prenter, Regularization with differential operators. I: General theory, J. Math. Anal. and Appl. 74 (1980), 504-529. MR 83j:65062a
    • (1980) J. Math. Anal. and Appl. , vol.74 , pp. 504-529
    • Locker, J.1    Prenter, P.M.2
  • 15
    • 0042265842 scopus 로고
    • Regularization with differential operators. II: Weak least squares finite element solutions to first kind integral equations
    • MR 83j:65062b
    • J. Locker and P. M. Prenter, Regularization with differential operators. II: Weak least squares finite element solutions to first kind integral equations, SIAM J. Numer. Anal. 17 (1980), 247-267. MR 83j:65062b
    • (1980) SIAM J. Numer. Anal. , vol.17 , pp. 247-267
    • Locker, J.1    Prenter, P.M.2
  • 16
    • 0042767096 scopus 로고
    • Numerical solution of Fujita's equation
    • Intern. Ser. Numer. Math. (G. Hämmerlin and K.-H. Hoffmann, eds.), Birkhäuser, Basel, MR 86a:65134
    • J. T. Marti, Numerical solution of Fujita's equation, In Improperly Posed Problems and Their Numerical Treatment, Intern. Ser. Numer. Math. 63 (G. Hämmerlin and K.-H. Hoffmann, eds.), Birkhäuser, Basel, 1983, pp. 179-187. MR 86a:65134
    • (1983) Improperly Posed Problems and Their Numerical Treatment , vol.63 , pp. 179-187
    • Marti, J.T.1
  • 17
    • 0002252004 scopus 로고
    • A survey of optimal recovery
    • (C.A. Micchelli and T.J. Rivlin, eds.), Plenum Press, New York, London, MR 58:29718
    • C. A. Micchelli and T. J. Rivlin, A survey of optimal recovery, In Optimal Estimation in Approximation Theory (C.A. Micchelli and T.J. Rivlin, eds.), Plenum Press, New York, London, 1977, pp. 1-53. MR 58:29718
    • (1977) Optimal Estimation in Approximation Theory , pp. 1-53
    • Micchelli, C.A.1    Rivlin, T.J.2
  • 19
    • 0001670085 scopus 로고
    • A generalization of Arcangeli's method for ill-posed problems leading to optimal rates
    • MR 93j:65091
    • M. T. Nair, A generalization of Arcangeli's method for ill-posed problems leading to optimal rates, Integral Equations Operator Theory 15 (1992), 1042-1046. MR 93j:65091
    • (1992) Integral Equations Operator Theory , vol.15 , pp. 1042-1046
    • Nair, M.T.1
  • 20
    • 84951418001 scopus 로고
    • Error bounds for Tikhonov regularization in Hilbert scales
    • MR 86e:65081
    • F. Natterer, Error bounds for Tikhonov regularization in Hilbert scales, Applicable Anal. 18 (1984), 29-37. MR 86e:65081
    • (1984) Applicable Anal. , vol.18 , pp. 29-37
    • Natterer, F.1
  • 21
    • 0001504070 scopus 로고
    • An a posteriori parameter choice for Tikhonov regularization in Hilbert scales leading to optimal convergence rates
    • MR 90b:65108
    • A. Neubauer, An a posteriori parameter choice for Tikhonov regularization in Hilbert scales leading to optimal convergence rates. SIAM J. Numer. Anal. 25 (1988), 1313-1326. MR 90b:65108
    • (1988) SIAM J. Numer. Anal. , vol.25 , pp. 1313-1326
    • Neubauer, A.1
  • 22
    • 84890326874 scopus 로고
    • A technique for the numerical solution of certain integral equations of the first kind
    • MR 24:B534
    • D. L. Phillips, A technique for the numerical solution of certain integral equations of the first kind. J. Assoc. Comput. Mach. 9 (1962), 84-97. MR 24:B534
    • (1962) J. Assoc. Comput. Mach. , vol.9 , pp. 84-97
    • Phillips, D.L.1
  • 23
    • 0001155879 scopus 로고
    • Parameter choice by discrepancy principles for the approximate solution of ill-posed problems
    • MR 86m:65165
    • E. Schock, Parameter choice by discrepancy principles for the approximate solution of ill-posed problems, Integral Equations Operator Theory 7 (1984), 895-898. MR 86m:65165
    • (1984) Integral Equations Operator Theory , vol.7 , pp. 895-898
    • Schock, E.1
  • 24
    • 0039221653 scopus 로고
    • On the asymptotic order of accuracy of Tikhonov regularizations
    • MR 86c:47012
    • E. Schock, On the asymptotic order of accuracy of Tikhonov regularizations, J. Optim. Theory Appl. 44 (1984), 95-104. MR 86c:47012
    • (1984) J. Optim. Theory Appl. , vol.44 , pp. 95-104
    • Schock, E.1
  • 26
    • 0021476579 scopus 로고
    • A method for solving ill-posed linear operator equations
    • MR 85m:65051
    • M. R. Trummer, A method for solving ill-posed linear operator equations, SIAM J. Numer. Anal. 21 (1984), 729-737. MR 85m:65051
    • (1984) SIAM J. Numer. Anal. , vol.21 , pp. 729-737
    • Trummer, M.R.1
  • 27
    • 0000855234 scopus 로고
    • Pitfalls in the numerical solution of linear ill-posed problems
    • MR 84g:65052
    • J. M. Varah, Pitfalls in the numerical solution of linear ill-posed problems, SIAM J. Sci. Stat. Comput. 4 (1983), 164-176. MR 84g:65052
    • (1983) SIAM J. Sci. Stat. Comput. , vol.4 , pp. 164-176
    • Varah, J.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.