-
1
-
-
0033317391
-
Centroidal voronoi tessellations: Applications and algorithms
-
Q. Du, V. Faber, and M. Gunzburger, Centroidal Voronoi tessellations: Applications and algorithms, SIAM Rev., 41 (1999), pp. 637-676.
-
(1999)
SIAM Rev.
, vol.41
, pp. 637-676
-
-
Du, Q.1
Faber, V.2
Gunzburger, M.3
-
2
-
-
0037114113
-
Grid generation and optimization based on centroidal voronoi tessellations
-
Q. Du and M. Gunzburger, Grid generation and optimization based on centroidal Voronoi tessellations, Appl. Math. Comput., 133 (2002), pp. 591-607.
-
(2002)
Appl. Math. Comput.
, vol.133
, pp. 591-607
-
-
Du, Q.1
Gunzburger, M.2
-
3
-
-
0037127128
-
Meshfree, probabilistic determination of point sets and support regions for meshless computing
-
Q. Du, M. Gunzburger, and L.-L. Ju, Meshfree, probabilistic determination of point sets and support regions for meshless computing, Comput. Methods Appl. Mech. Engrg., 191 (2002), pp. 1349-1366.
-
(2002)
Comput. Methods Appl. Mech. Engrg.
, vol.191
, pp. 1349-1366
-
-
Du, Q.1
Gunzburger, M.2
Ju, L.-L.3
-
4
-
-
85160608790
-
On the Lloyd's algorithm for computing CVTs
-
submitted
-
Q. Du and T. Wong, On the Lloyd's algorithm for computing CVTs, Comput. Geom. Anal., submitted.
-
Comput. Geom. Anal.
-
-
Du, Q.1
Wong, T.2
-
5
-
-
0034474976
-
Sensor location in feedback control of partial differential equation systems
-
IEEE Press, Piscataway, NJ
-
A. Faulds and B. King, Sensor location in feedback control of partial differential equation systems, in Proceedings of the 2000 IEEE International Conference on Control Applications, IEEE Press, Piscataway, NJ, 2000, pp. 536-541.
-
(2000)
Proceedings of the 2000 IEEE International Conference on Control Applications
, pp. 536-541
-
-
Faulds, A.1
King, B.2
-
7
-
-
0020102027
-
Least squares quantization in PCM
-
S. Lloyd, Least squares quantization in PCM, IEEE Trans. Inform. Theory, 28 (1982), pp. 129-137.
-
(1982)
IEEE Trans. Inform. Theory
, vol.28
, pp. 129-137
-
-
Lloyd, S.1
-
8
-
-
0036787154
-
Probabilistic methods for centroidal voronoi tessellations and their parallel implementations
-
L.-L. Ju, Q. Du, and M. Gunzburger, Probabilistic methods for centroidal Voronoi tessellations and their parallel implementations, J. Parallel. Comput., 28 (2002), pp. 1477-1500.
-
(2002)
J. Parallel. Comput.
, vol.28
, pp. 1477-1500
-
-
Ju, L.-L.1
Du, Q.2
Gunzburger, M.3
-
9
-
-
0001457509
-
Some methods for classification and analysis of multivariate observations
-
L. Le Cam and J. Neyman, eds., University of California, Berkeley, CA
-
J. MacQueen, Some methods for classification and analysis of multivariate observations, in Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. I, L. Le Cam and J. Neyman, eds., University of California, Berkeley, CA, 1967, pp. 281-297.
-
(1967)
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability
, vol.1
, pp. 281-297
-
-
MacQueen, J.1
-
10
-
-
0003760944
-
Spatial tessellations: Concepts and applications of voronoi diagrams
-
John Wiley, Chichester, UK
-
A. Okabe, B. Boots, and K. Sugihara, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, John Wiley, Chichester, UK, 1992.
-
(1992)
-
-
Okabe, A.1
Boots, B.2
Sugihara, K.3
-
11
-
-
0031221068
-
Algorithm 772. Stripack: Delaunay triangulation and voronoi diagrams on the surface of a sphere
-
R. Renka, Algorithm 772. Stripack: Delaunay triangulation and Voronoi diagrams on the surface of a sphere, ACM Trans. Math. Soft., 23 (1997), pp. 416-434.
-
(1997)
ACM Trans. Math. Soft.
, vol.23
, pp. 416-434
-
-
Renka, R.1
-
12
-
-
0004250318
-
-
Prentice-Hall, Englewood Cliffs, NJ
-
S. Ross, A First Course in Probability, 5th ed., Prentice-Hall, Englewood Cliffs, NJ, 1998.
-
(1998)
A First Course in Probability, 5th Ed.
-
-
Ross, S.1
-
13
-
-
0002700734
-
Constructive polynomial approximation on the sphere
-
I. Sloan and R. Womersley, Constructive polynomial approximation on the sphere, J. Approx. Theory, 103 (2000), pp. 91-118.
-
(2000)
J. Approx. Theory
, vol.103
, pp. 91-118
-
-
Sloan, I.1
Womersley, R.2
-
14
-
-
85160627718
-
How good can polynomial interpolation on the sphere be?
-
to appear
-
R. Womersley and I. Sloan, How good can polynomial interpolation on the sphere be?, Adv. Comput. Math., to appear.
-
Adv. Comput. Math.
-
-
Womersley, R.1
Sloan, I.2
|