-
1
-
-
0040293370
-
Multibump solutions for a class of Lagrangian systems slowly oscillating at infinity
-
Alessio F and Montecchiari P 1999 Multibump solutions for a class of Lagrangian systems slowly oscillating at infinity Ann. IHP, Analyse Nonlineaire 16 107-35
-
(1999)
Ann. IHP, Analyse Nonlineaire
, vol.16
, pp. 107-135
-
-
Alessio, F.1
Montecchiari, P.2
-
3
-
-
0035923577
-
Transverse intersection of invariant manifolds in singular systems
-
Batelli F and Palmer K 2001 Transverse intersection of invariant manifolds in singular systems J. Diff. Eq. 177 77-120
-
(2001)
J. Diff. Eq.
, vol.177
, pp. 77-120
-
-
Batelli, F.1
Palmer, K.2
-
4
-
-
0043081376
-
A global condition for quasi-random behavior in a class of conservative systems
-
Buffoni B and Séré E 1996 A global condition for quasi-random behavior in a class of conservative systems Commun. Pure Appl. Math. 49 285-305
-
(1996)
Commun. Pure Appl. Math.
, vol.49
, pp. 285-305
-
-
Buffoni, B.1
Séré, E.2
-
5
-
-
21844490275
-
A geometric criterion for positive topological entropy
-
Burns K and Weiss H 1995 A geometric criterion for positive topological entropy Commun. Math. Phys. 172 95-118
-
(1995)
Commun. Math. Phys.
, vol.172
, pp. 95-118
-
-
Burns, K.1
Weiss, H.2
-
6
-
-
0001686617
-
Asymptotic solutions of analytic Hamiltonian systems
-
Cherry T 1968 Asymptotic solutions of analytic Hamiltonian systems J. Diff. Eq. 4 142-59
-
(1968)
J. Diff. Eq.
, vol.4
, pp. 142-159
-
-
Cherry, T.1
-
7
-
-
84968502322
-
Homoclinic orbits for second order Hamilitonian systems possessing superquadratic potentials
-
Coti Zelati V and Rabinowitz P 1992 Homoclinic orbits for second order Hamilitonian systems possessing superquadratic potentials J. Am. Math. Soc. 4 693-727
-
(1992)
J. Am. Math. Soc.
, vol.4
, pp. 693-727
-
-
Coti Zelati, V.1
Rabinowitz, P.2
-
9
-
-
0001341199
-
Local mountain passes for semilinear elliptic problems in unbounded domains
-
del Pino M and Felmer P 1996 Local mountain passes for semilinear elliptic problems in unbounded domains Calc. Var. PDE 4 121-31
-
(1996)
Calc. Var. PDE
, vol.4
, pp. 121-131
-
-
Del Pino, M.1
Felmer, P.2
-
10
-
-
0000260189
-
Multi-peak bound states of nonlinear Schrödinger equations
-
del Pino M and Felmer P 1998 Multi-peak bound states of nonlinear Schrödinger equations Ann. IHP, Analyse Nonlineaire 15 127-49
-
(1998)
Ann. IHP, Analyse Nonlineaire
, vol.15
, pp. 127-149
-
-
Del Pino, M.1
Felmer, P.2
-
11
-
-
0001613187
-
Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential
-
Floer A and Weinstein A 1986 Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential J. Funct. Anal. 69 397-408
-
(1986)
J. Funct. Anal.
, vol.69
, pp. 397-408
-
-
Floer, A.1
Weinstein, A.2
-
14
-
-
0002610597
-
Multiple interior peak solutions for some singularly perturbed Neumann problems
-
Gui C and Wei J 1999 Multiple interior peak solutions for some singularly perturbed Neumann problems J. Diff. Eq. 158 1-27
-
(1999)
J. Diff. Eq.
, vol.158
, pp. 1-27
-
-
Gui, C.1
Wei, J.2
-
15
-
-
0000616123
-
Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method
-
Gui C 1996 Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method Commun. PDE 21 787-820
-
(1996)
Commun. PDE
, vol.21
, pp. 787-820
-
-
Gui, C.1
-
16
-
-
0000825718
-
On interacting bumps of semi-classical states of nonlinear Schrödinger equations
-
Kang X and Wei J 2000 On interacting bumps of semi-classical states of nonlinear Schrödinger equations Adv. Diff. Eq. 5 899-928
-
(2000)
Adv. Diff. Eq.
, vol.5
, pp. 899-928
-
-
Kang, X.1
Wei, J.2
-
17
-
-
0022075949
-
Slowly varying phase planes and boundary-layer theory
-
Kath W L 1985 Slowly varying phase planes and boundary-layer theory Stud. Appl. Math. 72 221-39
-
(1985)
Stud. Appl. Math.
, vol.72
, pp. 221-239
-
-
Kath, W.L.1
-
18
-
-
0000264842
-
On a singularly perturbed elliptic equation
-
Li Y Y 1997 On a singularly perturbed elliptic equation Adv. Diff. Eg. 2 955-80
-
(1997)
Adv. Diff. Eg.
, vol.2
, pp. 955-980
-
-
Li, Y.Y.1
-
20
-
-
4243124914
-
Passage through a separatrix in a resonance problem with a slowly-varying parameter
-
Neistadt A 1975 Passage through a separatrix in a resonance problem with a slowly-varying parameter J. Appl. Math. Mech. 39 594-605
-
(1975)
J. Appl. Math. Mech.
, vol.39
, pp. 594-605
-
-
Neistadt, A.1
-
22
-
-
0002776502
-
Stability of semiclassical bound states of nonlinear Schrödinger equations with potentials
-
Oh Y-G 1989 Stability of semiclassical bound states of nonlinear Schrödinger equations with potentials Commun. Math. Phys. 121 11-33
-
(1989)
Commun. Math. Phys.
, vol.121
, pp. 11-33
-
-
Oh, Y.-G.1
-
23
-
-
0000998584
-
On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential
-
Oh Y-G 1990 On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential Commun. Math. Phys. 131 223-53
-
(1990)
Commun. Math. Phys.
, vol.131
, pp. 223-253
-
-
Oh, Y.-G.1
-
24
-
-
38249038861
-
Transverse heteroclinic orbits and Cherry's example of a nonintegrable Hamiltonian system
-
Palmer K 1986 Transverse heteroclinic orbits and Cherry's example of a nonintegrable Hamiltonian system J. Diff. Eq. 65 321-60
-
(1986)
J. Diff. Eq.
, vol.65
, pp. 321-360
-
-
Palmer, K.1
-
25
-
-
34249835055
-
On a class of nonlinear Schrödinger equations
-
Rabinowitz P 1992 On a class of nonlinear Schrödinger equations Z. Angew Math. Phys. 43 270-91
-
(1992)
Z. Angew Math. Phys.
, vol.43
, pp. 270-291
-
-
Rabinowitz, P.1
-
26
-
-
51249165518
-
Existence of infinitely many homoclinic orbits in Hamiltonian systems
-
Séré E 1991 Existence of infinitely many homoclinic orbits in Hamiltonian systems Math. Z. 209 27-42
-
(1991)
Math. Z.
, vol.209
, pp. 27-42
-
-
Séré, E.1
-
27
-
-
34250081368
-
On concentration of positive bound states of nonlinear Schrödinger equations
-
Wang X 1993 On concentration of positive bound states of nonlinear Schrödinger equations Commun. Math. Phys. 153 229-44
-
(1993)
Commun. Math. Phys.
, vol.153
, pp. 229-244
-
-
Wang, X.1
|