-
1
-
-
0002057574
-
On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces
-
Baillon, J. B., Bruck, R. E., Reich, S. (1978). On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces. Houston. J. Math. 4:1-9.
-
(1978)
Houston. J. Math.
, vol.4
, pp. 1-9
-
-
Baillon, J.B.1
Bruck, R.E.2
Reich, S.3
-
2
-
-
0035351666
-
A weak-to-strong convergence principle for Fejér monotone methods in Hubert spaces
-
Bauschke, H. H., Combettes, P. L. (2001). A weak-to-strong convergence principle for Fejér monotone methods in Hubert spaces. Math. Oper. Res. 26:248-264.
-
(2001)
Math. Oper. Res.
, vol.26
, pp. 248-264
-
-
Bauschke, H.H.1
Combettes, P.L.2
-
3
-
-
0000256894
-
Nonexpansive projections and resolvents of accretive operators in Banach spaces
-
Bruck, R. E., Reich, S. (1977). Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houston J. Math. 3:459-470.
-
(1977)
Houston J. Math.
, vol.3
, pp. 459-470
-
-
Bruck, R.E.1
Reich, S.2
-
4
-
-
0041958639
-
Strong and weak convergence theorems for locally nonexpansive mappings in Banach spaces
-
Bruck, R. E., Kirk, W. A., Reich, S. (1982). Strong and weak convergence theorems for locally nonexpansive mappings in Banach spaces. Nonlinear Anal. 6:151-155.
-
(1982)
Nonlinear Anal.
, vol.6
, pp. 151-155
-
-
Bruck, R.E.1
Kirk, W.A.2
Reich, S.3
-
5
-
-
0000468935
-
Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property
-
Bruck, R. E., Kuczumow, T., Reich, S. (1993). Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property. Colloquium Math. 65:169-179.
-
(1993)
Colloquium Math.
, vol.65
, pp. 169-179
-
-
Bruck, R.E.1
Kuczumow, T.2
Reich, S.3
-
6
-
-
0002884749
-
Local moduli of convexity and their application to finding almost common fixed points of measurable families of operators
-
Censor; Y, Reich, S., eds. Contemporary Mathematics, American Mathematical Society: Providence, R.I.
-
Butnariu, D., Iusem, A. N. (1997). Local moduli of convexity and their application to finding almost common fixed points of measurable families of operators. In: Censor; Y, Reich, S., eds. Recent developments in optimization theory and nonlinear analysis. Contemporary Mathematics, American Mathematical Society: Providence, R.I. 61-91.
-
(1997)
Recent Developments in Optimization Theory and Nonlinear Analysis
, pp. 61-91
-
-
Butnariu, D.1
Iusem, A.N.2
-
8
-
-
77956972456
-
The outer Bregman projection method for stochastic feasibility problems in Banach spaces
-
Butnariu, D., Censor, Y., Reich, S., eds. Amsterdam: Elsevier
-
Butnariu, D., Resmerita, E. (2001). The outer Bregman projection method for stochastic feasibility problems in Banach spaces. In: Butnariu, D., Censor, Y., Reich, S., eds. Inherently parallel algorithms in feasibility and optimization and their applications. Amsterdam: Elsevier, pp. 69-87.
-
(2001)
Inherently Parallel Algorithms in Feasibility and Optimization and their Applications
, pp. 69-87
-
-
Butnariu, D.1
Resmerita, E.2
-
9
-
-
0041457258
-
A relaxed Cimmino type method for computing almost common fixed points of totally nonexpansive families of operators
-
Butnariu, D., Markowicz, I. (2002). A relaxed Cimmino type method for computing almost common fixed points of totally nonexpansive families of operators. Semin. on Fixed Point Theory 3:149-155.
-
(2002)
Semin. on Fixed Point Theory
, vol.3
, pp. 149-155
-
-
Butnariu, D.1
Markowicz, I.2
-
10
-
-
0031188734
-
Iterative averaging of entropic projections for solving stochastic convex feasibility problems
-
Butnariu, D., Censor, Y., Reich, S. (1997). Iterative averaging of entropic projections for solving stochastic convex feasibility problems. Comput. Optim. Appl. 8:21-39.
-
(1997)
Comput. Optim. Appl.
, vol.8
, pp. 21-39
-
-
Butnariu, D.1
Censor, Y.2
Reich, S.3
-
11
-
-
0032594392
-
Generic power convergence of operators in Banach spaces
-
Butnariu, D., Reich, S., Zaslavski, A. J. (1999). Generic power convergence of operators in Banach spaces. Numer. Funct. Anal. and Optim. 20:629-650.
-
(1999)
Numer. Funct. Anal. and Optim.
, vol.20
, pp. 629-650
-
-
Butnariu, D.1
Reich, S.2
Zaslavski, A.J.3
-
12
-
-
0033885848
-
Iterative methods of solving stochastic convex feasibility problems and applications
-
Butnariu, D., Iusem, A. N., Burachik, R. S. (2000a). Iterative methods of solving stochastic convex feasibility problems and applications. Comput. Optim. Appl. 15:269-307.
-
(2000)
Comput. Optim. Appl.
, vol.15
, pp. 269-307
-
-
Butnariu, D.1
Iusem, A.N.2
Burachik, R.S.3
-
13
-
-
85174220880
-
Total convexity of the powers of the norm in uniformly convex Banach spaces
-
Butnariu, D., Iusem, A. N., Resmerita, E. (2000b). Total convexity of the powers of the norm in uniformly convex Banach spaces. J. Conv. Anal. 7:319-334.
-
(2000)
J. Conv. Anal.
, vol.7
, pp. 319-334
-
-
Butnariu, D.1
Iusem, A.N.2
Resmerita, E.3
-
14
-
-
0041958636
-
Asymptotic behavior of relatively nonexpansive operators in Banach spaces
-
Butnariu, D., Reich, S., Zaslavski, A. J. (2001a). Asymptotic behavior of relatively nonexpansive operators in Banach spaces. J. Appl. Anal. 7:151-174.
-
(2001)
J. Appl. Anal.
, vol.7
, pp. 151-174
-
-
Butnariu, D.1
Reich, S.2
Zaslavski, A.J.3
-
15
-
-
77956711891
-
Asymptotic behavior of quasi nonexpansive mappings
-
Butnariu, D., Censor, Y., Reich, S., Eds. Amsterdam: Elsevier
-
Butnariu, D., Reich, S., Zaslavski, A. J. (2001b). Asymptotic behavior of quasi nonexpansive mappings. In: Butnariu, D., Censor, Y., Reich, S., Eds. Inherently parallel algorithms in feasibility and optimization and their applications. Amsterdam: Elsevier, pp. 49-68.
-
(2001)
Inherently Parallel Algorithms in Feasibility and Optimization and their Applications
, pp. 49-68
-
-
Butnariu, D.1
Reich, S.2
Zaslavski, A.J.3
-
16
-
-
0042972614
-
On uniform convexity, total convexity and the convergence of a proximal point and an outer Bregman projection method in Banach spaces
-
Butnariu, D., Iusem, A. N., Zalinescu, C. (2003). On uniform convexity, total convexity and the convergence of a proximal point and an outer Bregman projection method in Banach spaces. J. Conv. Anal. 10:35-61.
-
(2003)
J. Conv. Anal.
, vol.10
, pp. 35-61
-
-
Butnariu, D.1
Iusem, A.N.2
Zalinescu, C.3
-
17
-
-
0019587748
-
An iterative row-action method for interval convex programming
-
Censor, Y., Lent, A. (1996). An iterative row-action method for interval convex programming. J. Optim. Theory Appl. 34:321-353.
-
(1996)
J. Optim. Theory Appl.
, vol.34
, pp. 321-353
-
-
Censor, Y.1
Lent, A.2
-
18
-
-
0030456727
-
Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization
-
Censor, Y., Reich, S. (1996). Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization. Optimization 37:323-339.
-
(1996)
Optimization
, vol.37
, pp. 323-339
-
-
Censor, Y.1
Reich, S.2
-
20
-
-
0000020259
-
Sur la convergence des approximations successives pour les contractions non linéaires dans un espace de Banach
-
De Blasi, F. S., Myjak, J. (1976). Sur la convergence des approximations successives pour les contractions non linéaires dans un espace de Banach. C. R. Acad. Sci. Paris. 283:185-187.
-
(1976)
C. R. Acad. Sci. Paris
, vol.283
, pp. 185-187
-
-
De Blasi, F.S.1
Myjak, J.2
-
21
-
-
0042459159
-
Some generic properties in fixed point theory
-
De Blasi, F. S., Myjak, J. (1979). Some generic properties in fixed point theory. J. Math. Anal. Appl. 71:161-166.
-
(1979)
J. Math. Anal. Appl.
, vol.71
, pp. 161-166
-
-
De Blasi, F.S.1
Myjak, J.2
-
22
-
-
0000815948
-
Generic flows generated by continuous vector fields in Banach spaces
-
De Blasi, F. S., Myjak, J. (1983). Generic flows generated by continuous vector fields in Banach spaces. Adv. Math. 50:266-280.
-
(1983)
Adv. Math.
, vol.50
, pp. 266-280
-
-
De Blasi, F.S.1
Myjak, J.2
-
25
-
-
0343844132
-
Weak convergence theorems for asymptotically nonexpansive mappings and semigroups
-
Garcia Falset, J., Kaczor, W., Kuczumov, T., Reich, S. (2001). Weak convergence theorems for asymptotically nonexpansive mappings and semigroups. Nonlinear Anal. 43:377-401.
-
(2001)
Nonlinear Anal.
, vol.43
, pp. 377-401
-
-
Garcia Falset, J.1
Kaczor, W.2
Kuczumov, T.3
Reich, S.4
-
27
-
-
0003984450
-
Orlicz type category theorems for functional and differential equations
-
Myjak, J. (1983). Orlicz type category theorems for functional and differential equations. Dissertations Math. (Rozprawy Mat.) 206:1-81.
-
(1983)
Dissertations Math. (Rozprawy Mat.)
, vol.206
, pp. 1-81
-
-
Myjak, J.1
-
28
-
-
0001720708
-
Weak convergence theorems for nonexpansive mappings in Banach spaces
-
Reich, S. (1979). Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 67:274-276.
-
(1979)
J. Math. Anal. Appl.
, vol.67
, pp. 274-276
-
-
Reich, S.1
-
29
-
-
0038313697
-
A limit theorem for projections
-
Reich, S. (1983). A limit theorem for projections. Linear and Multilinear Algebra 13:281-290.
-
(1983)
Linear and Multilinear Algebra
, vol.13
, pp. 281-290
-
-
Reich, S.1
-
30
-
-
0039819760
-
Averaged mappings in the Hubert ball
-
Reich, S. (1985). Averaged mappings in the Hubert ball. J. Math. Anal. Appl. 109:199-206.
-
(1985)
J. Math. Anal. Appl.
, vol.109
, pp. 199-206
-
-
Reich, S.1
-
31
-
-
0002961915
-
A weak convergence theorem for the alternating method with Bregman distances
-
Kartsatos, A. G., ed. New York: Marcel Dekker
-
Reich, S. (1996). A weak convergence theorem for the alternating method with Bregman distances. In: Kartsatos, A. G., ed. Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. New York: Marcel Dekker.
-
(1996)
Theory and Applications of Nonlinear Operators of Accretive and Monotone Type
-
-
Reich, S.1
-
32
-
-
84968513648
-
The asymptotic behavior of firmly nonexpansive mappings
-
Reich, S., Shafrir, I. (1987). The asymptotic behavior of firmly nonexpansive mappings. Proc. Amer. Math. Soc. 101:246-250.
-
(1987)
Proc. Amer. Math. Soc.
, vol.101
, pp. 246-250
-
-
Reich, S.1
Shafrir, I.2
-
33
-
-
0033148224
-
Convergence of generic infinite products of nonexpansive and uniformly continuous operators
-
Reich, S., Zaslavski, A. J. (1999). Convergence of generic infinite products of nonexpansive and uniformly continuous operators. Nonlinear Anal. 36:1049-1065.
-
(1999)
Nonlinear Anal.
, vol.36
, pp. 1049-1065
-
-
Reich, S.1
Zaslavski, A.J.2
-
35
-
-
0000636147
-
Asymptotic behavior of dynamical systems with convex Lyapunov function
-
Reich, S., Zaslavski, A. J. (2000b). Asymptotic behavior of dynamical systems with convex Lyapunov function. J. Nonlinear Conv. Anal. 1:107-113.
-
(2000)
J. Nonlinear Conv. Anal.
, vol.1
, pp. 107-113
-
-
Reich, S.1
Zaslavski, A.J.2
-
36
-
-
0034187468
-
Generic convergence of descent methods in Banach spaces
-
Reich, S., Zaslavski, A. J. (2000c). Generic convergence of descent methods in Banach spaces. Math. Oper. Res. 25:231-242.
-
(2000)
Math. Oper. Res.
, vol.25
, pp. 231-242
-
-
Reich, S.1
Zaslavski, A.J.2
-
39
-
-
0034172582
-
Generic power convergence of order preserving mappings
-
Reich, S., Rubinov, A., Zaslavski, A. J. (2000). Generic power convergence of order preserving mappings. Nonlinear Anal. 40:537-547.
-
(2000)
Nonlinear Anal.
, vol.40
, pp. 537-547
-
-
Reich, S.1
Rubinov, A.2
Zaslavski, A.J.3
-
40
-
-
0042459161
-
On total convexity, Bregman projections and stability in Banach spaces
-
to appear
-
Resmerita, E. (2002). On total convexity, Bregman projections and stability in Banach spaces. J. Conv. Anal., to appear.
-
(2002)
J. Conv. Anal.
-
-
Resmerita, E.1
-
41
-
-
0030269319
-
Dynamic properties of optimal solutions of variational problems
-
Zaslavski, A. J. (1996). Dynamic properties of optimal solutions of variational problems. Nonlinear Anal. 27:895-932.
-
(1996)
Nonlinear Anal.
, vol.27
, pp. 895-932
-
-
Zaslavski, A.J.1
-
42
-
-
0035148007
-
Existence of solutions of optimal control problems for a generic integrand without convexity assumptions
-
Zaslavski, A. J. (2001). Existence of solutions of optimal control problems for a generic integrand without convexity assumptions. Nonlinear Anal. 43:339-361.
-
(2001)
Nonlinear Anal.
, vol.43
, pp. 339-361
-
-
Zaslavski, A.J.1
|