메뉴 건너뛰기




Volumn 24, Issue 5-6, 2003, Pages 531-555

On Lavrentiev regularization for ill-posed problems in Hilbert scales

Author keywords

A priori parameter choice; Discrepancy principle; Hubert scales; Ill posed problems; Inverse problems; Lavrentiev regularization; Monotone operators

Indexed keywords

APPROXIMATION THEORY; INTEGRAL EQUATIONS; PARAMETER ESTIMATION; PROBLEM SOLVING; THEOREM PROVING;

EID: 0041920596     PISSN: 01630563     EISSN: None     Source Type: Journal    
DOI: 10.1081/NFA-120023870     Document Type: Article
Times cited : (27)

References (31)
  • 1
    • 0002446104 scopus 로고    scopus 로고
    • Dynamical systems and discrete methods for solving nonlinear ill-posed problems
    • Anastassion, G., ed. Singapore: World Scientific
    • Airapetyan, R. G., Ramm, A. G. (2000). Dynamical systems and discrete methods for solving nonlinear ill-posed problems, In: Anastassion, G., ed. Appl. Math. Reviews 1. Singapore: World Scientific, pp. 491-536.
    • (2000) Appl. Math. Reviews 1 , pp. 491-536
    • Airapetyan, R.G.1    Ramm, A.G.2
  • 4
    • 0042960146 scopus 로고    scopus 로고
    • Operator theoretic treatment of linear Abel integral equations of first kind
    • Gorenflo, R., Yamamoto, M. (1999). Operator theoretic treatment of linear Abel integral equations of first kind. Japan J. Industrial Appl. Math. 16:137-161.
    • (1999) Japan J. Industrial Appl. Math. , vol.16 , pp. 137-161
    • Gorenflo, R.1    Yamamoto, M.2
  • 6
    • 0001273835 scopus 로고
    • Regularization methods for large-scale problems
    • Hanke, M., Hansen, P. C. (1993). Regularization methods for large-scale problems, Surv. Math. Ind. 3:253-315.
    • (1993) Surv. Math. Ind. , vol.3 , pp. 253-315
    • Hanke, M.1    Hansen, P.C.2
  • 8
    • 0008412647 scopus 로고    scopus 로고
    • Lavrent'ev regularization of ill-posed problems containing nonlinear near-to-monotone operators with application to autoconvolution equation
    • Janno, J. (2000). Lavrent'ev regularization of ill-posed problems containing nonlinear near-to-monotone operators with application to autoconvolution equation. Inverse Problems 16:333-348.
    • (2000) Inverse Problems , vol.16 , pp. 333-348
    • Janno, J.1
  • 9
    • 0041457245 scopus 로고    scopus 로고
    • Error estimates of some Newton-type methods for solving nonlinear inverse problems in Hubert scales
    • Jin, Q. N. (2000). Error estimates of some Newton-type methods for solving nonlinear inverse problems in Hubert scales. Inverse Problems 16:187-197.
    • (2000) Inverse Problems , vol.16 , pp. 187-197
    • Jin, Q.N.1
  • 12
    • 85053490095 scopus 로고    scopus 로고
    • Convergence of regularized solutions of nonlinear ill-posed problems with monotone operators
    • Marcellini, P., et al., eds. New York: Marcel Dekker Inc.
    • Liu, F., Nashed, M. Z. (1996). Convergence of regularized solutions of nonlinear ill-posed problems with monotone operators. In: Marcellini, P., et al., eds. Partial Differential Equations and Applications. New York: Marcel Dekker Inc. 353-361.
    • (1996) Partial Differential Equations and Applications , pp. 353-361
    • Liu, F.1    Nashed, M.Z.2
  • 13
    • 0042960225 scopus 로고    scopus 로고
    • Tikhonov regularization of nonlinear ill-posed problems with closed operators in Hubert scales
    • Liu, F., Nashed, M. Z. (1997). Tikhonov regularization of nonlinear ill-posed problems with closed operators in Hubert scales. J. Inv. Ill-Posed Problems 5:363-376.
    • (1997) J. Inv. Ill-posed Problems , vol.5 , pp. 363-376
    • Liu, F.1    Nashed, M.Z.2
  • 14
    • 0042440415 scopus 로고    scopus 로고
    • Regularization of nonlinear ill-posed variational inequalities and convergence rates
    • Liu, F., Nashed, M. Z. (1998). Regularization of nonlinear ill-posed variational inequalities and convergence rates. Set-Valued Analysis 6:313-344.
    • (1998) Set-valued Analysis , vol.6 , pp. 313-344
    • Liu, F.1    Nashed, M.Z.2
  • 15
    • 0018999755 scopus 로고
    • Regularization with differential operators I: General theory
    • Locker, J., Prenter, P. (1980). Regularization with differential operators I: general theory. J. Math. Anal. Appl. 74:504-529.
    • (1980) J. Math. Anal. Appl. , vol.74 , pp. 504-529
    • Locker, J.1    Prenter, P.2
  • 17
    • 4243091943 scopus 로고
    • Tikhonov regularization for finitely and infinitely smoothing operators
    • Mair, B. A. (1994). Tikhonov regularization for finitely and infinitely smoothing operators, SIAM J. Math. Anal. 25:135-147.
    • (1994) SIAM J. Math. Anal. , vol.25 , pp. 135-147
    • Mair, B.A.1
  • 18
    • 0000739264 scopus 로고
    • On the solution of functional equations by the method of regularization
    • Morozov, V. A. (1966). On the solution of functional equations by the method of regularization. Soviet Math. Dokl. 7:414-417.
    • (1966) Soviet Math. Dokl. , vol.7 , pp. 414-417
    • Morozov, V.A.1
  • 19
    • 22644452310 scopus 로고    scopus 로고
    • On Morozov's method for Tikhonov regularization as an optimal order yielding algorithm
    • Nair, M. T. (1999). On Morozov's method for Tikhonov regularization as an optimal order yielding algorithm. J. Anal. Appl. 18:37-46.
    • (1999) J. Anal. Appl. , vol.18 , pp. 37-46
    • Nair, M.T.1
  • 20
    • 0036435928 scopus 로고    scopus 로고
    • Optimal order results for a class of regularization methods using unbounded operators
    • Nair, M. T. (2002). Optimal order results for a class of regularization methods using unbounded operators. Int. Equations and Operator Theory 44:79-92.
    • (2002) Int. Equations and Operator Theory , vol.44 , pp. 79-92
    • Nair, M.T.1
  • 21
    • 84951418001 scopus 로고
    • Error bounds for Tikhonov regularization in Hubert scales
    • Natterer, F. (1984). Error bounds for Tikhonov regularization in Hubert scales, Appl. Anal. 18:29-37.
    • (1984) Appl. Anal. , vol.18 , pp. 29-37
    • Natterer, F.1
  • 22
    • 0001504070 scopus 로고
    • An a posteriori parameter choice for Tikhonov regularization in Hubert scales leading to optimal convergence rates
    • Neubauer, A. (1988). An a posteriori parameter choice for Tikhonov regularization in Hubert scales leading to optimal convergence rates. SIAM J. Numer. Anal. 25:1313-1326.
    • (1988) SIAM J. Numer. Anal. , vol.25 , pp. 1313-1326
    • Neubauer, A.1
  • 23
    • 84948247213 scopus 로고
    • Tikhonov regularization of nonlinear ill-posed problems in Hubert scales
    • Neubauer, A. (1992). Tikhonov regularization of nonlinear ill-posed problems in Hubert scales. Appl. Anal. 46:59-72.
    • (1992) Appl. Anal. , vol.46 , pp. 59-72
    • Neubauer, A.1
  • 24
    • 0008336402 scopus 로고    scopus 로고
    • The Galerkin scheme for Lavrentiev m-times iterated method to solve accretive Volterra integral equations of the first kind
    • Plato, R. (1997). The Galerkin scheme for Lavrentiev m-times iterated method to solve accretive Volterra integral equations of the first kind. BIT 37:404-423.
    • (1997) BIT , vol.37 , pp. 404-423
    • Plato, R.1
  • 25
    • 0010677370 scopus 로고
    • Error estimates for Tikhonov regularization in Hubert scales
    • Schröter, T., Tautenhahn, U. (1994). Error estimates for Tikhonov regularization in Hubert scales. Numer. Funct. Anal. and Optimiz. 15:155-168.
    • (1994) Numer. Funct. Anal. and Optimiz. , vol.15 , pp. 155-168
    • Schröter, T.1    Tautenhahn, U.2
  • 27
    • 0000414254 scopus 로고    scopus 로고
    • Error estimates for regularization methods in Hubert scales
    • Tautenhahn, U. (1996). Error estimates for regularization methods in Hubert scales. SIAM J. Numer. Anal. 33:2120-2130.
    • (1996) SIAM J. Numer. Anal. , vol.33 , pp. 2120-2130
    • Tautenhahn, U.1
  • 28
    • 0001679731 scopus 로고    scopus 로고
    • On a general regularization scheme for nonlinear ill-posed problems: II. Regularization in Hubert scales
    • Tautenhahn, U. (1998). On a general regularization scheme for nonlinear ill-posed problems: II. Regularization in Hubert scales. Inverse Problems 14:1607-1616.
    • (1998) Inverse Problems , vol.14 , pp. 1607-1616
    • Tautenhahn, U.1
  • 29
    • 0036469711 scopus 로고    scopus 로고
    • On the method of Lavrentiev regularization for nonlinear ill-posed problems
    • Tautenhahn, U. (2002). On the method of Lavrentiev regularization for nonlinear ill-posed problems Inverse Problems 18:191-207.
    • (2002) Inverse Problems , vol.18 , pp. 191-207
    • Tautenhahn, U.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.