-
2
-
-
0000709793
-
Negative association of random variables, with applications
-
Joag-Dev K., Proschan F. Negative association of random variables, with applications. Ann. Statist. 11:1983;286-295.
-
(1983)
Ann. Statist.
, vol.11
, pp. 286-295
-
-
Joag-Dev, K.1
Proschan, F.2
-
3
-
-
0000571327
-
A note on the almost sure convergence of sums of negatively dependent random variables
-
Matula P. A note on the almost sure convergence of sums of negatively dependent random variables. Statist. Probab. Lett. 15:1992;209-213.
-
(1992)
Statist. Probab. Lett.
, vol.15
, pp. 209-213
-
-
Matula, P.1
-
4
-
-
0001478817
-
Asymptotic independence and limit theorems for positively and negatively dependent random variables.
-
Y.L. Tong. Hayward, CA: IMS
-
Newman C.M. Asymptotic independence and limit theorems for positively and negatively dependent random variables. Tong Y.L. Inequalities in Statistics and Probability. 1984;127-140 IMS, Hayward, CA.
-
(1984)
Inequalities in Statistics and Probability.
, pp. 127-140
-
-
Newman, C.M.1
-
5
-
-
0001421474
-
An invariance principle for certain dependent sequences
-
Newman C.M., Wright A.L. An invariance principle for certain dependent sequences. Ann. Probab. 9:1981;671-675.
-
(1981)
Ann. Probab.
, vol.9
, pp. 671-675
-
-
Newman, C.M.1
Wright, A.L.2
-
6
-
-
22044449218
-
Maximum of partial sums and an invariance principle for a class of weak dependent random variables
-
Peligrad M. Maximum of partial sums and an invariance principle for a class of weak dependent random variables. Proc. Amer. Math. Soc. 126:1998;1181-1189.
-
(1998)
Proc. Amer. Math. Soc.
, vol.126
, pp. 1181-1189
-
-
Peligrad, M.1
-
7
-
-
0001434501
-
Asymptotic normality of random fields of positively or negatively associated processes
-
Roussas G.G. Asymptotic normality of random fields of positively or negatively associated processes. J. Multivariate Anal. 50:1994;152-173.
-
(1994)
J. Multivariate Anal.
, vol.50
, pp. 152-173
-
-
Roussas, G.G.1
-
8
-
-
0000620943
-
Exponential probability inequalities with some applications.
-
T.S. Ferguson, L.S. Shapley, & J.B. MacQueen. Hayward, CA: IMS
-
Roussas C.G. Exponential probability inequalities with some applications. Ferguson T.S., Shapley L.S., MacQueen J.B. Statistics, Probability and Game Theory. 1996;303-319 IMS, Hayward, CA.
-
(1996)
Statistics, Probability and Game Theory
, pp. 303-319
-
-
Roussas, C.G.1
-
9
-
-
0034559111
-
A comparison theorem on maximum inequalities between negatively associated and independent random variables
-
Shao, Q.M., 2000. A comparison theorem on maximum inequalities between negatively associated and independent random variables. J. Theor. Probab. 13, 343-356.
-
(2000)
J. Theor. Probab.
, vol.13
, pp. 343-356
-
-
Shao, Q.M.1
-
10
-
-
0038803531
-
The law of the iterated logarithm for negatively associated random variables
-
Shao Q.M., Su C. The law of the iterated logarithm for negatively associated random variables. Stochastic Process. Appl. 83:1999;139-148.
-
(1999)
Stochastic Process. Appl.
, vol.83
, pp. 139-148
-
-
Shao, Q.M.1
Su, C.2
-
11
-
-
0346719558
-
The moment inequalities and weak convergence for negatively associated sequences
-
Su C., Zhao L.C., Wang Y.B. The moment inequalities and weak convergence for negatively associated sequences. Sci. China. 40A:1997;172-182.
-
(1997)
Sci. China
, vol.40
, pp. 172-182
-
-
Su, C.1
Zhao, L.C.2
Wang, Y.B.3
-
12
-
-
0039768212
-
Rosenthal type inequalities for B-valued strong mixing random fields and their applications
-
Zhang L.X. Rosenthal type inequalities for B-valued strong mixing random fields and their applications. Sci. China. 41A:1998;736-745.
-
(1998)
Sci. China
, vol.41
, pp. 736-745
-
-
Zhang, L.X.1
-
13
-
-
84979052131
-
Convergence rates in the strong laws of asymptotically negatively associated random fields
-
Zhang L.X. Convergence rates in the strong laws of asymptotically negatively associated random fields. Appl. Math.-JCU Ser. B. 14(4):1999;406-416.
-
(1999)
Appl. Math.-JCU Ser. B
, vol.14
, Issue.4
, pp. 406-416
-
-
Zhang, L.X.1
-
14
-
-
0034134790
-
A functional central limit theorem for asymptotically negatively dependent random variables
-
Zhang L.X. A functional central limit theorem for asymptotically negatively dependent random variables. Acta Math. Hungar. 86:2000;237-259.
-
(2000)
Acta Math. Hungar.
, vol.86
, pp. 237-259
-
-
Zhang, L.X.1
|