-
1
-
-
84966232948
-
Rings whose faithful left ideals are cofaithful
-
Beachy J.A., Blair W.D. Rings whose faithful left ideals are cofaithful. Pacific J. Math. 58(1):1975;1-13.
-
(1975)
Pacific J. Math.
, vol.58
, Issue.1
, pp. 1-13
-
-
Beachy, J.A.1
Blair, W.D.2
-
2
-
-
0002193122
-
Strongly and properly semiprime rings and modules
-
in: Jain-Rizvi (Ed.), World Scientific, Singapore
-
K.I. Beidar, R. Wisbauer, Strongly and properly semiprime rings and modules, in: Jain-Rizvi (Ed.), Ring Theory, World Scientific, Singapore, 1993, pp. 58-95.
-
(1993)
Ring Theory
, pp. 58-95
-
-
Beidar, K.I.1
Wisbauer, R.2
-
3
-
-
21944456809
-
Pseudocomplements in the lattice of torsion classes
-
Birkenmeier G.F., Wiegandt R. Pseudocomplements in the lattice of torsion classes. Comm. Algebra. 26(1):1998;197-220.
-
(1998)
Comm. Algebra
, vol.26
, Issue.1
, pp. 197-220
-
-
Birkenmeier, G.F.1
Wiegandt, R.2
-
5
-
-
84972548356
-
Strongly semiprime rings
-
Handelman D.E. Strongly semiprime rings. Pacific J. Math. 60(1):1975;115-122.
-
(1975)
Pacific J. Math.
, vol.60
, Issue.1
, pp. 115-122
-
-
Handelman, D.E.1
-
7
-
-
0035532042
-
The lattice structure of hereditary pretorsion classes
-
Raggi F., Ríos Montes J., Wisbauer R. The lattice structure of hereditary pretorsion classes. Comm. Algebra. 29(1):2001;131-140.
-
(2001)
Comm. Algebra
, vol.29
, Issue.1
, pp. 131-140
-
-
Raggi, F.1
Ríos Montes, J.2
Wisbauer, R.3
-
11
-
-
0033591812
-
When multiplication of topologizing filters is commutative
-
van den Berg J.E. When multiplication of topologizing filters is commutative. J. Pure Appl. Algebra. 140:1999;87-105.
-
(1999)
J. Pure Appl. Algebra
, vol.140
, pp. 87-105
-
-
Van Den Berg, J.E.1
-
12
-
-
0033449370
-
When every torsion preradical is a torsion radical
-
van den Berg J.E. When every torsion preradical is a torsion radical. Comm. Algebra. 27(11):1999;5527-5547.
-
(1999)
Comm. Algebra
, vol.27
, Issue.11
, pp. 5527-5547
-
-
Van Den Berg, J.E.1
-
13
-
-
38248999611
-
Every algebraic chain is the congruence lattice of a ring
-
van den Berg J.E., Raftery J.G. Every algebraic chain is the congruence lattice of a ring. J. Algebra. 162(1):1993;95-106.
-
(1993)
J. Algebra
, vol.162
, Issue.1
, pp. 95-106
-
-
Van Den Berg, J.E.1
Raftery, J.G.2
-
14
-
-
21344477106
-
On rings (and chain domains) with restricted completeness conditions on topologizing filters
-
van den Berg J.E., Raftery J.G. On rings (and chain domains) with restricted completeness conditions on topologizing filters. Comm. Algebra. 22(4):1994;1103-1113.
-
(1994)
Comm. Algebra
, vol.22
, Issue.4
, pp. 1103-1113
-
-
Van Den Berg, J.E.1
Raftery, J.G.2
-
15
-
-
84972555852
-
Rings whose kernel functors are linearly ordered
-
Viola-Prioli A.M.D., Viola-Prioli J.E. Rings whose kernel functors are linearly ordered. Pacific J. Math. 132(1):1988;21-34.
-
(1988)
Pacific J. Math.
, vol.132
, Issue.1
, pp. 21-34
-
-
Viola-Prioli, A.M.D.1
Viola-Prioli, J.E.2
-
18
-
-
0003208519
-
Modules and Algebras: Bimodule Structure and Group Actions on Algebras
-
Longman, Harlow
-
R. Wisbauer, Modules and Algebras: Bimodule Structure and Group Actions on Algebras, Pitman Monographs, Vol. 81, Longman, Harlow 1996.
-
(1996)
Pitman Monographs
, vol.81
-
-
Wisbauer, R.1
|