-
3
-
-
84985332635
-
Applications of deviation inequalities on finite metric sets
-
J. Bastero and J. Bernués. Applications of deviation inequalities on finite metric sets. Math. Nachr., 153 (1991), 33-41.
-
(1991)
Math. Nachr.
, vol.153
, pp. 33-41
-
-
Bastero, J.1
Bernués, J.2
-
7
-
-
0000898117
-
Inequalities in Fourier analysis
-
W. Beckner. Inequalities in Fourier analysis. Ann. of Math., 102 (1975), 159-182.
-
(1975)
Ann. of Math.
, vol.102
, pp. 159-182
-
-
Beckner, W.1
-
9
-
-
0001126703
-
Best constants in Young's inequality, its converse, and its generalization to more than three functions
-
H. J. Brascamp and E. H. Leib. Best constants in Young's inequality, its converse, and its generalization to more than three functions. Advances in Math., 20 (1976), 151-173.
-
(1976)
Advances in Math.
, vol.20
, pp. 151-173
-
-
Brascamp, H.J.1
Leib, E.H.2
-
11
-
-
84963053013
-
Some properties of the set and ball measures of noncompactness and applications
-
T. Domínguez-Benavides. Some properties of the set and ball measures of noncompactness and applications, J. London Math. Soc. (2), 34 (1986), 120-128.
-
(1986)
J. London Math. Soc. (2)
, vol.34
, pp. 120-128
-
-
Domínguez-Benavides, T.1
-
12
-
-
0010723651
-
The unit ball of every infinite-dimensional normed linear space contains a(1 + ε)-separated sequence
-
J. Elton and E. Odell. The unit ball of every infinite-dimensional normed linear space contains a(1 + ε)-separated sequence. Colloq. Math., 44 (1981), 105-109.
-
(1981)
Colloq. Math.
, vol.44
, pp. 105-109
-
-
Elton, J.1
Odell, E.2
-
13
-
-
0042306345
-
On the best constant for the Besicovitch covering theorem
-
Z. Füredi and P. A. Loeb. On the best constant for the Besicovitch covering theorem. Proc. Amer. Math. Soc., 121 (1994), 1063-1073.
-
(1994)
Proc. Amer. Math. Soc.
, vol.121
, pp. 1063-1073
-
-
Füredi, Z.1
Loeb, P.A.2
-
14
-
-
0000853833
-
Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces
-
M. Gromov and V. D. Milman. Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces. Compositio Math., 62 (1987), 263-282.
-
(1987)
Compositio Math.
, vol.62
, pp. 263-282
-
-
Gromov, M.1
Milman, V.D.2
-
15
-
-
0042807449
-
Subsets of the unit ball that are separated by more than one
-
C. A. Kottman. Subsets of the unit ball that are separated by more than one. Studia Math., 53 (1975), 15-27.
-
(1975)
Studia Math.
, vol.53
, pp. 15-27
-
-
Kottman, C.A.1
-
16
-
-
0000520690
-
Some deviation inequalities
-
B. Maurey. Some deviation inequalities. Geom. Funct. Anal., 1 (1991), 188-197.
-
(1991)
Geom. Funct. Anal.
, vol.1
, pp. 188-197
-
-
Maurey, B.1
-
17
-
-
84968496786
-
Equilateral sets in Minkowski spaces
-
C. M. Petty. Equilateral sets in Minkowski spaces. Proc. Amer. Math. Soc., 29 (1971), 369-374.
-
(1971)
Proc. Amer. Math. Soc.
, vol.29
, pp. 369-374
-
-
Petty, C.M.1
-
18
-
-
4243745473
-
A concentration of measure phenomenon on uniformly convex bodies
-
Israel, 1992-1994
-
M. Schmuckenschläger. A concentration of measure phenomenon on uniformly convex bodies. Geometric Aspects of Functional Analysis (Israel, 1992-1994), (1995) 275-287.
-
(1995)
Geometric Aspects of Functional Analysis
, pp. 275-287
-
-
Schmuckenschläger, M.1
-
19
-
-
0002021480
-
A new isoperimetric inequality and the concentration of measure phenomenon
-
Israel Seminar, 1989-1990. Lecture Notes in Math.
-
M. Talagrand. A new isoperimetric inequality and the concentration of measure phenomenon. Geometric Aspects of Functional Analysis (Israel Seminar, 1989-1990). Lecture Notes in Math., 1469 (1991), 94-124.
-
(1991)
Geometric Aspects of Functional Analysis
, vol.1469
, pp. 94-124
-
-
Talagrand, M.1
|