메뉴 건너뛰기




Volumn 45, Issue 2, 1998, Pages 245-252

Concentration of the distance in finite dimensional normed spaces

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0041777799     PISSN: 00255793     EISSN: None     Source Type: Journal    
DOI: 10.1112/s0025579300014182     Document Type: Article
Times cited : (31)

References (19)
  • 3
    • 84985332635 scopus 로고
    • Applications of deviation inequalities on finite metric sets
    • J. Bastero and J. Bernués. Applications of deviation inequalities on finite metric sets. Math. Nachr., 153 (1991), 33-41.
    • (1991) Math. Nachr. , vol.153 , pp. 33-41
    • Bastero, J.1    Bernués, J.2
  • 7
    • 0000898117 scopus 로고
    • Inequalities in Fourier analysis
    • W. Beckner. Inequalities in Fourier analysis. Ann. of Math., 102 (1975), 159-182.
    • (1975) Ann. of Math. , vol.102 , pp. 159-182
    • Beckner, W.1
  • 9
    • 0001126703 scopus 로고
    • Best constants in Young's inequality, its converse, and its generalization to more than three functions
    • H. J. Brascamp and E. H. Leib. Best constants in Young's inequality, its converse, and its generalization to more than three functions. Advances in Math., 20 (1976), 151-173.
    • (1976) Advances in Math. , vol.20 , pp. 151-173
    • Brascamp, H.J.1    Leib, E.H.2
  • 11
    • 84963053013 scopus 로고
    • Some properties of the set and ball measures of noncompactness and applications
    • T. Domínguez-Benavides. Some properties of the set and ball measures of noncompactness and applications, J. London Math. Soc. (2), 34 (1986), 120-128.
    • (1986) J. London Math. Soc. (2) , vol.34 , pp. 120-128
    • Domínguez-Benavides, T.1
  • 12
    • 0010723651 scopus 로고
    • The unit ball of every infinite-dimensional normed linear space contains a(1 + ε)-separated sequence
    • J. Elton and E. Odell. The unit ball of every infinite-dimensional normed linear space contains a(1 + ε)-separated sequence. Colloq. Math., 44 (1981), 105-109.
    • (1981) Colloq. Math. , vol.44 , pp. 105-109
    • Elton, J.1    Odell, E.2
  • 13
    • 0042306345 scopus 로고
    • On the best constant for the Besicovitch covering theorem
    • Z. Füredi and P. A. Loeb. On the best constant for the Besicovitch covering theorem. Proc. Amer. Math. Soc., 121 (1994), 1063-1073.
    • (1994) Proc. Amer. Math. Soc. , vol.121 , pp. 1063-1073
    • Füredi, Z.1    Loeb, P.A.2
  • 14
    • 0000853833 scopus 로고
    • Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces
    • M. Gromov and V. D. Milman. Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces. Compositio Math., 62 (1987), 263-282.
    • (1987) Compositio Math. , vol.62 , pp. 263-282
    • Gromov, M.1    Milman, V.D.2
  • 15
    • 0042807449 scopus 로고
    • Subsets of the unit ball that are separated by more than one
    • C. A. Kottman. Subsets of the unit ball that are separated by more than one. Studia Math., 53 (1975), 15-27.
    • (1975) Studia Math. , vol.53 , pp. 15-27
    • Kottman, C.A.1
  • 16
    • 0000520690 scopus 로고
    • Some deviation inequalities
    • B. Maurey. Some deviation inequalities. Geom. Funct. Anal., 1 (1991), 188-197.
    • (1991) Geom. Funct. Anal. , vol.1 , pp. 188-197
    • Maurey, B.1
  • 17
    • 84968496786 scopus 로고
    • Equilateral sets in Minkowski spaces
    • C. M. Petty. Equilateral sets in Minkowski spaces. Proc. Amer. Math. Soc., 29 (1971), 369-374.
    • (1971) Proc. Amer. Math. Soc. , vol.29 , pp. 369-374
    • Petty, C.M.1
  • 18
    • 4243745473 scopus 로고
    • A concentration of measure phenomenon on uniformly convex bodies
    • Israel, 1992-1994
    • M. Schmuckenschläger. A concentration of measure phenomenon on uniformly convex bodies. Geometric Aspects of Functional Analysis (Israel, 1992-1994), (1995) 275-287.
    • (1995) Geometric Aspects of Functional Analysis , pp. 275-287
    • Schmuckenschläger, M.1
  • 19
    • 0002021480 scopus 로고
    • A new isoperimetric inequality and the concentration of measure phenomenon
    • Israel Seminar, 1989-1990. Lecture Notes in Math.
    • M. Talagrand. A new isoperimetric inequality and the concentration of measure phenomenon. Geometric Aspects of Functional Analysis (Israel Seminar, 1989-1990). Lecture Notes in Math., 1469 (1991), 94-124.
    • (1991) Geometric Aspects of Functional Analysis , vol.1469 , pp. 94-124
    • Talagrand, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.