메뉴 건너뛰기




Volumn 75, Issue 2, 1996, Pages 215-229

A sharp error estimate for the numerical solution of multivariate Dirichlet problems

Author keywords

Approximate solution; Average operator; Convergence with rates; Dirichlet problem continuous and discrete; First exit time; Lipschitz class; Primary; Second modulus of continuity; Secondary; Sharp inequality; Uniform grid; Wiener process and simple random walk

Indexed keywords

APPROXIMATION THEORY; ERROR ANALYSIS; MATHEMATICAL OPERATORS; PROBABILITY; PROBLEM SOLVING; RANDOM PROCESSES; STATISTICAL METHODS;

EID: 0041730144     PISSN: 03770427     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0377-0427(96)00052-0     Document Type: Article
Times cited : (1)

References (7)
  • 1
    • 0039927033 scopus 로고
    • A sharp error estimate for the numerical solution of a Dirichlet problem for the Poisson equation
    • B. Büttgenback, H. Esser, G. Lüttgens and R.J. Nessel, A sharp error estimate for the numerical solution of a Dirichlet problem for the Poisson equation, J. Comput. Appl. Math. 44 (1992) 331-337.
    • (1992) J. Comput. Appl. Math. , vol.44 , pp. 331-337
    • Büttgenback, B.1    Esser, H.2    Lüttgens, G.3    Nessel, R.J.4
  • 2
    • 0039927032 scopus 로고
    • On the sharpness of error bounds in connection with finite difference schemes on uniform grids for boundary value problems of ordinary differential equations
    • B. Büttgenback, H. Esser and R.J. Nessel, On the sharpness of error bounds in connection with finite difference schemes on uniform grids for boundary value problems of ordinary differential equations, Numer. Funct. Anal. Optim. 12 (1991) 285-298.
    • (1991) Numer. Funct. Anal. Optim. , vol.12 , pp. 285-298
    • Büttgenback, B.1    Esser, H.2    Nessel, R.J.3
  • 7
    • 0040519905 scopus 로고
    • Principles of random walk
    • Springer, New York
    • F. Spitzer, Principles of Random Walk, Graduate Texts in Math. 34 (Springer, New York, 1976).
    • (1976) Graduate Texts in Math. , vol.34
    • Spitzer, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.