-
1
-
-
0003418977
-
-
Springer, Berlin
-
C.P. Slichter, Principles of Magnetic Resonance (Springer, Berlin, 1996). R.R. Ernst, G. Bodenhausen and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford University Press, Oxford, 1994).
-
(1996)
Principles of Magnetic Resonance
-
-
Slichter, C.P.1
-
2
-
-
0003412651
-
-
Oxford University Press, Oxford
-
C.P. Slichter, Principles of Magnetic Resonance (Springer, Berlin, 1996). R.R. Ernst, G. Bodenhausen and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford University Press, Oxford, 1994).
-
(1994)
Principles of Nuclear Magnetic Resonance in One and Two Dimensions
-
-
Ernst, R.R.1
Bodenhausen, G.2
Wokaun, A.3
-
3
-
-
0034607880
-
-
H. Rabitz, R. de Vive-Riedle, M. Motzkus and K. Kompa, Science 288, 824 (2000).
-
(2000)
Science
, vol.288
, pp. 824
-
-
Rabitz, H.1
De Vive-Riedle, R.2
Motzkus, M.3
Kompa, K.4
-
4
-
-
37649028410
-
-
W. Dür, G. Vidal, J. I. Cirac, N. Linden and S. Popescu, Phys. Rev. Lett. 87, 137901 (2001).
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 137901
-
-
Dür, W.1
Vidal, G.2
Cirac, J.I.3
Linden, N.4
Popescu, S.5
-
7
-
-
0345829455
-
-
quant-ph/0107035.
-
C. H. Bennett, J. I. Cirac, M. S. Leifer, D. W. Leung, N. Linden, S. Popescu and G. Vidai, Optimal simulation of two-qubit Hamiltonians using general local operations; quant-ph/0107035.
-
Optimal Simulation of Two-qubit Hamiltonians Using General Local Operations
-
-
Bennett, C.H.1
Cirac, J.I.2
Leifer, M.S.3
Leung, D.W.4
Linden, N.5
Popescu, S.6
Vidai, G.7
-
9
-
-
85111344905
-
-
note
-
min) are the highest (lower) eigenvalue of H.
-
-
-
-
12
-
-
0006214401
-
-
Fortschritte der Physik 48 9-11 pp 769-1138 (2000).
-
(2000)
Fortschritte der Physik
, vol.48
, Issue.9-11
, pp. 769-1138
-
-
-
13
-
-
0034245980
-
Universal Fault-Tolerant Quantum Computation on Decoherence-Free Subspaces
-
E. Bacon, J. Kempe, D. A. Lidar and K. B. Whaley, Universal Fault-Tolerant Quantum Computation on Decoherence-Free Subspaces; Phys. Rev. Lett. 85, 1758 (2000). D. Bacon, J. Kempe, D. P. Di Vincenzo, D. A. Lidar and K. B. Whaley, Encoded Universality in Physical Implementations of a Quantum Computer, quant-ph/0102140 D. P. Di Vincenzo, D. Bacon, J. Kempe, G. Burkard and K. B. Whaley, Universal Quantum Computation with the Exchange Interaction; quant-ph/0005116
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 1758
-
-
Bacon, E.1
Kempe, J.2
Lidar, D.A.3
Whaley, K.B.4
-
14
-
-
0034245980
-
-
quant-ph/0102140
-
E. Bacon, J. Kempe, D. A. Lidar and K. B. Whaley, Universal Fault-Tolerant Quantum Computation on Decoherence-Free Subspaces; Phys. Rev. Lett. 85, 1758 (2000). D. Bacon, J. Kempe, D. P. Di Vincenzo, D. A. Lidar and K. B. Whaley, Encoded Universality in Physical Implementations of a Quantum Computer, quant-ph/0102140 D. P. Di Vincenzo, D. Bacon, J. Kempe, G. Burkard and K. B. Whaley, Universal Quantum Computation with the Exchange Interaction; quant-ph/0005116
-
Encoded Universality in Physical Implementations of a Quantum Computer
-
-
Bacon, D.1
Kempe, J.2
Di Vincenzo, D.P.3
Lidar, D.A.4
Whaley, K.B.5
-
15
-
-
0034245980
-
-
quant-ph/0005116
-
E. Bacon, J. Kempe, D. A. Lidar and K. B. Whaley, Universal Fault-Tolerant Quantum Computation on Decoherence-Free Subspaces; Phys. Rev. Lett. 85, 1758 (2000). D. Bacon, J. Kempe, D. P. Di Vincenzo, D. A. Lidar and K. B. Whaley, Encoded Universality in Physical Implementations of a Quantum Computer, quant-ph/0102140 D. P. Di Vincenzo, D. Bacon, J. Kempe, G. Burkard and K. B. Whaley, Universal Quantum Computation with the Exchange Interaction; quant-ph/0005116
-
Universal Quantum Computation with the Exchange Interaction
-
-
Di Vincenzo, D.P.1
Bacon, D.2
Kempe, J.3
Burkard, G.4
Whaley, K.B.5
-
17
-
-
0346460362
-
-
note
-
Notice that this has important consequences for information processing, since irreducible representations of the permutation group are left invariant under symmetric evolutions, and the dimension of the largest representation grows only linearly with N. Therefore in this highly symmetric setting we cannot even exploit the exponential growth (in N) of dimension offered by quantum computers, and the system becomes useless for quantum computation unless some degree of inhomogeneity can be introduced.
-
-
-
-
19
-
-
0346460364
-
-
note
-
This is equivalent to assume that each qubit is equally affected by the environment.
-
-
-
-
20
-
-
85111346969
-
-
note
-
2 - 1). Nevertheless the counting of degrees of freedom shows that this R belongs to a subset of SO(n - 1) and, in general, will not allow for a diagonalization of M unless this latter matrix is severely restricted. A complete study of hamiltonian simulation for qunits is made in [7].
-
-
-
-
21
-
-
0001828762
-
-
Chapter II
-
Rajendra Bhatia Matrix Analysis, Chapter II. M. A. Nielsen and G. Vidal, Majorization and the interconversion of bipartite states; Quantum Information and Computation, Vol. 1, 1 (2001) 76.
-
Matrix Analysis
-
-
Bhatia, R.1
-
22
-
-
0001828762
-
Majorization and the interconversion of bipartite states
-
Rajendra Bhatia Matrix Analysis, Chapter II. M. A. Nielsen and G. Vidal, Majorization and the interconversion of bipartite states; Quantum Information and Computation, Vol. 1, 1 (2001) 76.
-
(2001)
Quantum Information and Computation
, vol.1
, Issue.1
, pp. 76
-
-
Nielsen, M.A.1
Vidal, G.2
-
24
-
-
85111346088
-
-
note
-
→ when we rearrange them in decreasing order.
-
-
-
-
26
-
-
0346460363
-
-
note
-
z} is HLU-equivalent to a gate with permuted components. The majorization relation ≺ is already defined to be invarinat under permutations, and this is why we do not consider permuted versions of vecλ′ in Eq. (22).
-
-
-
-
27
-
-
85111346943
-
-
note
-
i : i, j = 1,2,3} .
-
-
-
|