메뉴 건너뛰기




Volumn 45, Issue 12, 2003, Pages 1861-1870

A unified presentation of certain families of non-Fuchsian differential equations via fractional calculus operators

Author keywords

Analytic functions; Bessel equation; Differintegral equations; Fractional calculus; Fuchsian (and non Fuchsian) differential equations; Fukuhara equation; Generalized Leibniz rule; Index law; Linearity property; Ordinary and partial differential equations; Tricomi equation; Whittaker (and modified Whittaker) equations

Indexed keywords

BESSEL FUNCTIONS; DIFFERENTIATION (CALCULUS); INTEGRAL EQUATIONS; MATHEMATICAL OPERATORS; PROBLEM SOLVING; THEOREM PROVING;

EID: 0041703882     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0898-1221(03)90007-1     Document Type: Article
Times cited : (5)

References (28)
  • 3
    • 0001753227 scopus 로고    scopus 로고
    • Some families of ordinary and partial fractional differintegral equations
    • S.-T. Tu, D.-K. Chyan and H.M. Srivastava, Some families of ordinary and partial fractional differintegral equations, Integral Transform. Spec. Funct. 11, 291-302, (2001).
    • (2001) Integral Transform. Spec. Funct. , vol.11 , pp. 291-302
    • Tu, S.-T.1    Chyan, D.-K.2    Srivastava, H.M.3
  • 4
    • 0042798666 scopus 로고    scopus 로고
    • Some families of linear ordinary and partial differential equations solvable by means of fractional calculus
    • S.-D. Lin, H.M. Srivastava, S.-T. Tu and P.-Y. Wang, Some families of linear ordinary and partial differential equations solvable by means of fractional calculus, Internat. J. Differential Equations Appl. 4, 405-421, (2002).
    • (2002) Internat. J. Differential Equations Appl. , vol.4 , pp. 405-421
    • Lin, S.-D.1    Srivastava, H.M.2    Tu, S.-T.3    Wang, P.-Y.4
  • 5
    • 0012040989 scopus 로고    scopus 로고
    • Explicit solutions of certain ordinary differential equations by means of fractional calculus
    • S.-D. Lin, S.-T. Tu and H.M. Srivastava, Explicit solutions of certain ordinary differential equations by means of fractional calculus, J. Fract. Calc. 20, 35-43, (2001).
    • (2001) J. Fract. Calc. , vol.20 , pp. 35-43
    • Lin, S.-D.1    Tu, S.-T.2    Srivastava, H.M.3
  • 6
    • 0037174272 scopus 로고    scopus 로고
    • Certain classes of ordinary and partial differential equations solvable by means of fractional calculus
    • S.-D. Lin, S.-T. Tu and H.M. Srivastava, Certain classes of ordinary and partial differential equations solvable by means of fractional calculus, Appl. Math. Comput. 131, 223-233, (2002).
    • (2002) Appl. Math. Comput. , vol.131 , pp. 223-233
    • Lin, S.-D.1    Tu, S.-T.2    Srivastava, H.M.3
  • 7
    • 0041295930 scopus 로고    scopus 로고
    • Explicit solutions of some classes of non-Fuchsian differential equations by means of fractional calculus
    • S.-D. Lin, S.-T. Tu and H.M. Srivastava, Explicit solutions of some classes of non-Fuchsian differential equations by means of fractional calculus, J. Fract. Calc. 21, 49-60, (2002).
    • (2002) J. Fract. Calc. , vol.21 , pp. 49-60
    • Lin, S.-D.1    Tu, S.-T.2    Srivastava, H.M.3
  • 8
    • 0001744387 scopus 로고    scopus 로고
    • Solutions of a class of ordinary and partial differential equations via fractional calculus
    • S.-T. Tu, S.-D. Lin and H.M. Srivastava, Solutions of a class of ordinary and partial differential equations via fractional calculus, J. Fract. Calc. 18, 103-110, (2000).
    • (2000) J. Fract. Calc. , vol.18 , pp. 103-110
    • Tu, S.-T.1    Lin, S.-D.2    Srivastava, H.M.3
  • 9
    • 0000796387 scopus 로고    scopus 로고
    • Solutions of a certain class of fractional differ integral equations
    • S.-T. Tu, S.-D. Lin, Y.-T. Huang, and H.M. Srivastava, Solutions of a certain class of fractional differ integral equations, Appl. Math. Lett. 14 (2), 223-229, (2001).
    • (2001) Appl. Math. Lett. , vol.14 , Issue.2 , pp. 223-229
    • Tu, S.-T.1    Lin, S.-D.2    Huang, Y.-T.3    Srivastava, H.M.4
  • 10
  • 11
  • 12
    • 0041295931 scopus 로고
    • Descartes Press, Koriyama
    • K. Nishimoto, Fractional Calculus, Volume III, Descartes Press, Koriyama, (1989).
    • (1989) Fractional Calculus , vol.3
    • Nishimoto, K.1
  • 13
  • 14
  • 16
    • 0042798664 scopus 로고    scopus 로고
    • ν method to nonhomogeneous Gauss and Bessel equations
    • ν method to nonhomogeneous Gauss and Bessel equations, J. Fract. Calc. 9, 1-15, (1996).
    • (1996) J. Fract. Calc. , vol.9 , pp. 1-15
    • Nishimoto, K.1
  • 18
    • 0004360656 scopus 로고    scopus 로고
    • ν method to nonhomogeneous and homogeneous Whittaker equations. I
    • ν method to nonhomogeneous and homogeneous Whittaker equations. I, J. Fract. Calc. 9, 17-22, (1996).
    • (1996) J. Fract. Calc. , vol.9 , pp. 17-22
    • Nishimoto, K.1    Salinas De Romero, S.2
  • 20
    • 0041295929 scopus 로고    scopus 로고
    • N-method to the homogeneous Whittaker equations (revise and supplement)
    • K. Nishimoto, S. Salinas de Romero, J. Matera and A.I. Prieto, N-method to the homogeneous Whittaker equations (Revise and supplement), J. Fract. Calc. 16, 123-128, (1999).
    • (1999) J. Fract. Calc. , vol.16 , pp. 123-128
    • Nishimoto, K.1    Salinas De Romero, S.2    Matera, J.3    Prieto, A.I.4
  • 22
    • 0004230843 scopus 로고    scopus 로고
    • ν method to nonhomogeneous and homogeneous Whittaker equations. II (some illustrative examples)
    • ν method to nonhomogeneous and homogeneous Whittaker equations. II (Some illustrative examples), J. Fract. Calc. 12, 29-35, (1997).
    • (1997) J. Fract. Calc. , vol.12 , pp. 29-35
    • Salinas De Romero, S.1    Nishimoto, K.2
  • 23
    • 0039592686 scopus 로고    scopus 로고
    • An application of the N-fractional calculus operator method to a modified Whittaker equation
    • S. Salinas de Romero and H.M. Srivastava, An application of the N-fractional calculus operator method to a modified Whittaker equation, Appl. Math. Comput. 115, 11-21, (2000).
    • (2000) Appl. Math. Comput. , vol.115 , pp. 11-21
    • Salinas De Romero, S.1    Srivastava, H.M.2
  • 28
    • 0041796379 scopus 로고    scopus 로고
    • ν method applied to some second order nonhomogeneous equations
    • ν method applied to some second order nonhomogeneous equations, J. Fract. Calc. 16, 85-97, (1999).
    • (1999) J. Fract. Calc. , vol.16 , pp. 85-97
    • Galué, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.