-
1
-
-
0010883464
-
The numerical evaluation of diffraction integrals
-
Springer, New York, Chap. 2
-
R. Barakat, “The numerical evaluation of diffraction integrals,” in The Computer in Optical Research, R. Frieden, ed. (Springer, New York, 1980), Chap. 2.
-
(1980)
The Computer in Optical Research, R. Frieden, Ed
-
-
Barakat, R.1
-
4
-
-
84975568598
-
Quasi-fast hankel transform
-
A. Siegman, “Quasi-fast Hankel transform,” Opt. Lett. 1, 13–15 (1977).
-
(1977)
Opt. Lett
, vol.1
, pp. 13-15
-
-
Siegman, A.1
-
5
-
-
0020824442
-
Fast algorithm for the computation of the zero-order hankel transform
-
P. Murphy and N. Gallagher, “Fast algorithm for the computation of the zero-order Hankel transform,” J. Opt. Soc. Am. 73, 1130–1137 (1983).
-
(1983)
J. Opt. Soc. Am
, vol.73
, pp. 1130-1137
-
-
Murphy, P.1
Gallagher, N.2
-
6
-
-
84975664132
-
End correction in the quasi-fast hankel transform for optical propagation problems
-
G. Agrawal and M. Lax, “End correction in the quasi-fast Hankel transform for optical propagation problems,” Opt. Lett. 6, 171–173 (1981).
-
(1981)
Opt. Lett
, vol.6
, pp. 171-173
-
-
Agrawal, G.1
Lax, M.2
-
7
-
-
0017931077
-
An algorithm for the numerical evaluation of the hankel transform
-
A. Oppenheim, G. Frisk, and D. Martinez, “An algorithm for the numerical evaluation of the Hankel transform,” Proc. IEEE 66, 264–265 (1978).
-
(1978)
Proc. IEEE
, vol.66
, pp. 264-265
-
-
Oppenheim, A.1
Frisk, G.2
Martinez, D.3
-
8
-
-
0038585012
-
An algorithm for the fourier-bessel transform
-
S. Candel, “An algorithm for the Fourier-Bessel transform,” Comput. Phys. Commun. 23, 343–353 (1981).
-
(1981)
Comput. Phys. Commun
, vol.23
, pp. 343-353
-
-
Candel, S.1
-
9
-
-
0003232304
-
High-accuracy fast hankel transform for optical beam propagation
-
V. Magni, V. Cerullo, and S. Silvestri, “High-accuracy fast Hankel transform for optical beam propagation,” J. Opt. Soc. Am. A 9, 2031–2033 (1992).
-
(1992)
J. Opt. Soc. Am
, vol.A9
, pp. 2031-2033
-
-
Magni, V.1
Cerullo, V.2
Silvestri, S.3
-
10
-
-
0004372040
-
Optical diffraction of fractal figures: Random sierpinski carpets
-
D. Berger, S. Chamaly, M. Perreau, D. Mercier, P. Monceau, and J. Levy, “Optical diffraction of fractal figures: random Sierpinski carpets,” J. Phys. I (Paris) 1, 1433–1450 (1991).
-
(1991)
J. Phys. I (Paris)
, vol.1
, pp. 1433-1450
-
-
Berger, D.1
Chamaly, S.2
Perreau, M.3
Mercier, D.4
Monceau, P.5
Levy, J.6
-
11
-
-
0043221399
-
Numerical evaluation of zeroorder hankel transforms using filon quadrature philosophy
-
R. Barakat and E. Parshall, “Numerical evaluation of zeroorder Hankel transforms using Filon quadrature philosophy,” Appl. Math. Lett. 9, 21–26 (1996).
-
(1996)
Appl. Math. Lett
, vol.9
, pp. 21-26
-
-
Barakat, R.1
Parshall, E.2
-
12
-
-
85010097362
-
Filon trapezoidal schemes for hankel transforms of orders zero and one
-
Appl. Math. Lett. (to be published)
-
R. Barakat and B. Sandler, “Filon trapezoidal schemes for Hankel transforms of orders zero and one,” Appl. Math. Lett. (to be published).
-
-
-
Barakat, R.1
Sandler, B.2
-
13
-
-
85010124160
-
Numerical evaluation for firstorder hankel transforms using filon quadrature philosophy
-
Appl. Math. Lett. (to be published)
-
R. Barakat and B. Sandler, “Numerical evaluation for firstorder Hankel transforms using Filon quadrature philosophy,” Appl. Math. Lett. (to be published).
-
-
-
Barakat, R.1
Sandler, B.2
-
14
-
-
0005054331
-
On a quadrature formula for trigonometric integrals
-
L. Filon, “On a quadrature formula for trigonometric integrals,” Proc. R. Soc. Edin. 49, 38–47 (1928).
-
(1928)
Proc. R. Soc. Edin
, vol.49
, pp. 38-47
-
-
Filon, L.1
-
17
-
-
0003498504
-
-
Academic, San Diego, Calif
-
I. Gradshteyn and I. Ryzhk, Tables of Integrals, Series, and Products (Academic, San Diego, Calif., 1980).
-
(1980)
Tables of Integrals, Series, and Products
-
-
Gradshteyn, I.1
Ryzhk, I.2
-
20
-
-
0039476861
-
-
Vol. 7, Bessel Functions, Part III, Zeros and Associated ValuesCambridge University Press, Cambridge
-
F. Oliver, ed., Royal Society Mathematical Tables: Vol. 7, Bessel Functions, Part III, Zeros and Associated Values (Cambridge University Press, Cambridge, 1960).
-
(1960)
Royal Society Mathematical Tables
-
-
Oliver, F.1
-
21
-
-
0041542071
-
Application of the sampling theorem to optical diffraction theory
-
R. Barakat, “Application of the sampling theorem to optical diffraction theory,” J. Opt. Soc. Am. 54, 920–930 (1964).
-
(1964)
J. Opt. Soc. Am
, vol.54
, pp. 920-930
-
-
Barakat, R.1
-
22
-
-
84894401608
-
Solution to an abel integral equation for bandlimited functions by means of sampling theorems
-
R. Barakat, “Solution to an Abel integral equation for bandlimited functions by means of sampling theorems,” J. Math. Phys. (Cambridge, Mass.) 43, 332–335 (1964).
-
(1964)
J. Math. Phys. (Cambridge, Mass.)
, vol.43
, pp. 332-335
-
-
Barakat, R.1
-
23
-
-
0017558676
-
The shannon sampling theorem-its various extensions and applications: A tutorial review
-
A. Jerri, “The Shannon sampling theorem-its various extensions and applications: a tutorial review,” Proc. IEEE 65, 1565–1596 (1977).
-
(1977)
Proc. IEEE
, vol.65
, pp. 1565-1596
-
-
Jerri, A.1
|