메뉴 건너뛰기




Volumn 10, Issue 2, 1999, Pages 133-169

Processing images by semi-linear predictability minimization

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; ENVIRONMENT; FORECASTING; PHOTOGRAPHY; PHYSIOLOGY; VISION;

EID: 0041637282     PISSN: 0954898X     EISSN: None     Source Type: Journal    
DOI: 10.1088/0954-898X_10_2_303     Document Type: Article
Times cited : (7)

References (28)
  • 1
    • 33749754615 scopus 로고    scopus 로고
    • A new learning algorithm for blind signal separation
    • ed D S Touretzky et al (Cambridge, MA: MIT Press)
    • Amari S, Cichocki A and Yang H H 1996 A new learning algorithm for blind signal separation Advances in Neural Information Processing Systems 8 ed D S Touretzky et al (Cambridge, MA: MIT Press) pp 757-63
    • (1996) Advances in Neural Information Processing Systems 8 , pp. 757-763
    • Amari, S.1    Cichocki, A.2    Yang, H.H.3
  • 2
    • 0000818877 scopus 로고
    • Understanding retinal color coding from first principles
    • Atick J J, Li Z and Redlich AN 1992 Understanding retinal color coding from first principles Neural Comput. 4 559-72
    • (1992) Neural Comput. , vol.4 , pp. 559-572
    • Atick, J.J.1    Li, Z.2    Redlich, A.N.3
  • 5
    • 0029411030 scopus 로고
    • An information-maximization approach to blind separation and blind deconvolution
    • Bell A J and Sejnowski T J 1995 An information-maximization approach to blind separation and blind deconvolution Neural Comput. 7 1129-59
    • (1995) Neural Comput. , vol.7 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 6
    • 0027812550 scopus 로고
    • Blind beamforming for non-gaussian signals
    • Cardoso J-F and Souloumiac A 1993 Blind beamforming for non-Gaussian signals IEE Proc. F 140 362-70
    • (1993) IEE Proc. F , vol.140 , pp. 362-370
    • Cardoso, J.-F.1    Souloumiac, A.2
  • 7
    • 0028416938 scopus 로고
    • Independent component analysis - A new concept?
    • Comon P 1994 Independent component analysis - a new concept? Signal Process. 36 287-314
    • (1994) Signal Process , vol.36 , pp. 287-314
    • Comon, P.1
  • 8
    • 0031171662 scopus 로고    scopus 로고
    • Non-linear feature extraction by redundancy reduction in an unsupervised stochastic neural network
    • Deco G and Parra L 1997 Non-linear feature extraction by redundancy reduction in an unsupervised stochastic neural network Neural Networks 10 683-91
    • (1997) Neural Networks , vol.10 , pp. 683-691
    • Deco, G.1    Parra, L.2
  • 9
    • 85000338560 scopus 로고
    • What is the goal of sensory coding?
    • Field D J 1994 What is the goal of sensory coding? Neural Comput. 6 559-601
    • (1994) Neural Comput. , vol.6 , pp. 559-601
    • Field, D.J.1
  • 10
    • 0025604930 scopus 로고
    • Forming sparse representations by local anti-Hebbian learning
    • Földiák P 1990 Forming sparse representations by local anti-Hebbian learning Biol. Cybern. 64 165-70
    • (1990) Biol. Cybern. , vol.64 , pp. 165-170
    • Földiák, P.1
  • 11
    • 0033114102 scopus 로고    scopus 로고
    • Feature extraction through LOCOCODE
    • Hochreiter S and Schmidhuber J 1999 Feature extraction through LOCOCODE Neural Comput. 11 679-714
    • (1999) Neural Comput. , vol.11 , pp. 679-714
    • Hochreiter, S.1    Schmidhuber, J.2
  • 12
    • 0026191274 scopus 로고
    • Blind separation of sources, part 1: An adaptive algorithm based on neuromimetic architecture
    • Jutten C and Heute;rault J 1991 Blind separation of sources, part 1: an adaptive algorithm based on neuromimetic architecture Signal Process. 24 1-10
    • (1991) Signal Process , vol.24 , pp. 1-10
    • Jutten, C.1    Heute2    rault, J.3
  • 13
    • 0043262325 scopus 로고
    • Comparison of two unsupervised neural network models for redundancy reduction
    • ed M C Mozer et al (Hillsdale, NJ: Erlbaum)
    • Lindstädt S 1993 Comparison of two unsupervised neural network models for redundancy reduction Proc. 1993 Connectionist Models Summer School ed M C Mozer et al (Hillsdale, NJ: Erlbaum) pp 308-15
    • (1993) Proc. 1993 Connectionist Models Summer School , pp. 308-315
    • Lindstädt, S.1
  • 14
    • 0023981750 scopus 로고
    • Self-organization in a perceptual network
    • Linsker R 1988 Self-organization in a perceptual network IEEE Comput. 21 105-17
    • (1988) IEEE Comput. , vol.21 , pp. 105-117
    • Linsker, R.1
  • 15
    • 0028157133 scopus 로고
    • A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between on-and off-centre inputs
    • Miller K D 1994 A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between on-and off-centre inputs J. Neurosci. 14 409-41
    • (1994) J. Neurosci. , vol.14 , pp. 409-441
    • Miller, K.D.1
  • 16
    • 0000302959 scopus 로고
    • Separation of independent signals using time-delayed correlations
    • Molgedey L and Schuster HG 1994 Separation of independent signals using time-delayed correlations Phys. Rev. Lett. 72 3634-7
    • (1994) Phys. Rev. Lett. , vol.72 , pp. 3634-3637
    • Molgedey, L.1    Schuster, H.G.2
  • 17
    • 0001210842 scopus 로고    scopus 로고
    • Redundancy reduction and independent component analysis: Conditions on cumulants and adaptive approaches
    • Nadal J-P and Parga N 1997 Redundancy reduction and independent component analysis: conditions on cumulants and adaptive approaches Neural Comput. 9 1421-56
    • (1997) Neural Comput. , vol.9 , pp. 1421-1456
    • Nadal, J.-P.1    Parga, N.2
  • 18
    • 0000184052 scopus 로고    scopus 로고
    • Statistical independence and novelty detection with information preserving nonlinear maps
    • Parra L, Deco G and Miesbach S 1996 Statistical independence and novelty detection with information preserving nonlinear maps Neural Comput. 8 260-9
    • (1996) Neural Comput. , vol.8 , pp. 260-269
    • Parra, L.1    Deco, G.2    Miesbach, S.3
  • 19
    • 0025164912 scopus 로고
    • Development of feature detectors by self-organization: A network model
    • Rubner J and Schulten K 1990 Development of feature detectors by self-organization: a network model Biol. Cybern. 62 193-9
    • (1990) Biol. Cybern. , vol.62 , pp. 193-199
    • Rubner, J.1    Schulten, K.2
  • 20
    • 84956074083 scopus 로고
    • A self-organization network for principal-component analysis
    • Rubner J and Tavan P 1989 A self-organization network for principal-component analysis Europhys. Lett. 10 693-8
    • (1989) Europhys. Lett. , vol.10 , pp. 693-698
    • Rubner, J.1    Tavan, P.2
  • 21
    • 0040422903 scopus 로고
    • Learning factorial codes by predictability minimization
    • Schmidhuber J H 1992 Learning factorial codes by predictability minimization Neural Comput. 4 863-79
    • (1992) Neural Comput. , vol.4 , pp. 863-879
    • Schmidhuber, J.H.1
  • 22
    • 0041759302 scopus 로고
    • Netzwerkarchitekturen, zielfunktionen und kettenregel
    • Institut für Informatik, Technische Universität München
    • _ 1993 Netzwerkarchitekturen, Zielfunktionen und Kettenregel Habilitationsschrift Institut für Informatik, Technische Universität München
    • (1993) Habilitationsschrift
  • 23
    • 84874197433 scopus 로고    scopus 로고
    • Neural predictors for detecting and removing redundant information
    • ed H Cruse, J Dean and H Ritter (Dordrecht: Kluwer) in press
    • _ 1999 Neural predictors for detecting and removing redundant information Adaptive Behavior and Learning ed H Cruse, J Dean and H Ritter (Dordrecht: Kluwer) in press
    • (1999) Adaptive Behavior and Learning
  • 24
    • 0009305378 scopus 로고
    • Discovering predictable classifications
    • Schmidhuber J H and Prelinger D 1993 Discovering predictable classifications Neural Comput. 5 625-35
    • (1993) Neural Comput. , vol.5 , pp. 625-635
    • Schmidhuber, J.H.1    Prelinger, D.2
  • 25
    • 0039238512 scopus 로고    scopus 로고
    • Semilinear predictability minimization produces well-known feature detectors
    • Schmidhuber J H, Eldracher M and Foltin B 1996 Semilinear predictability minimization produces well-known feature detectors Neural Comput. 8 773-86
    • (1996) Neural Comput. , vol.8 , pp. 773-786
    • Schmidhuber, J.H.1    Eldracher, M.2    Foltin, B.3
  • 27
    • 0011766779 scopus 로고    scopus 로고
    • Local gain adaptation in stochastic gradient descent
    • London: IEE in press
    • _ 1999 Local gain adaptation in stochastic gradient descent Proc. 9th Int. Conf. on Artificial Neural Networks (London: IEE) in press
    • (1999) Proc. 9th Int. Conf. on Artificial Neural Networks
  • 28
    • 0041016997 scopus 로고
    • Unsupervised discrimination of clustered data via optimization of binary information gain
    • ed S J Hanson et al (San Mateo, CA: Morgan Kaufmann)
    • Schraudolph N N and Sejnowski T J 1993 Unsupervised discrimination of clustered data via optimization of binary information gain Advances in Neural Information Processing Systems 5 ed S J Hanson et al (San Mateo, CA: Morgan Kaufmann) pp 499-506
    • (1993) Advances in Neural Information Processing Systems , vol.5 , pp. 499-506
    • Schraudolph, N.N.1    Sejnowski, T.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.