-
1
-
-
0000602759
-
From Maxwell to paraxial wave optics
-
M. Lax, W. H. Louisell, and W. B. McKnight, “From Maxwell to paraxial wave optics,” Phys. Rev. A 11, 1365–1370 (1975).
-
(1975)
Phys. Rev. A
, vol.11
, pp. 1365-1370
-
-
Lax, M.1
Louisell, W.H.2
McKnight, W.B.3
-
2
-
-
0018458499
-
Gaussian beam propagation beyond the paraxial approximation
-
G. P. Agrawal and D. N. Pattanayak, “Gaussian beam propagation beyond the paraxial approximation,” J. Opt. Soc. Am. 69, 575–578 (1979).
-
(1979)
J. Opt. Soc. Am
, vol.69
, pp. 575-578
-
-
Agrawal, G.P.1
Pattanayak, D.N.2
-
3
-
-
0000241467
-
From Gaussian beam to complex-source-point spherical wave
-
M. Couture and P. Belanger, “From Gaussian beam to complex-source-point spherical wave,” Phys. Rev. A 24, 355–359 (1981).
-
(1981)
Phys. Rev. A
, vol.24
, pp. 355-359
-
-
Couture, M.1
Belanger, P.2
-
4
-
-
0015397187
-
Ray techniques in electromagnetics
-
G. A. Deschamps, “Ray techniques in electromagnetics,” Proc. IEEE 60, 1022–1035 (1972).
-
(1972)
Proc. IEEE
, vol.60
, pp. 1022-1035
-
-
Deschamps, G.A.1
-
5
-
-
0000528958
-
Propagation of light beams beyond the paraxial approximation
-
T. Takenaka, M. Yokota, and O. Fukumitsu, “Propagation of light beams beyond the paraxial approximation,” J. Opt. Soc. Am. A 2, 826–829 (1985).
-
(1985)
J. Opt. Soc. Am. A
, vol.2
, pp. 826-829
-
-
Takenaka, T.1
Yokota, M.2
Fukumitsu, O.3
-
6
-
-
85010097339
-
Hermite–Gaussian functions of complex argument as optical-beam eigenfunctions
-
A. E. Siegman, “Hermite–Gaussian functions of complex argument as optical-beam eigenfunctions,” J. Opt. Soc. Am. 63, 1093–1094 (1973).
-
(1973)
J. Opt. Soc. Am
, vol.63
, pp. 1093-1094
-
-
Siegman, A.E.1
-
7
-
-
84975559474
-
Gaussian amplitude functions that are exact solutions to the scalar Helmholtz equation
-
B. T. Landesman and H. H. Barrett, “Gaussian amplitude functions that are exact solutions to the scalar Helmholtz equation,” J. Opt. Soc. Am. A 5, 1610–1619 (1988).
-
(1988)
J. Opt. Soc. Am. A
, vol.5
, pp. 1610-1619
-
-
Landesman, B.T.1
Barrett, H.H.2
-
8
-
-
84975597856
-
Transition from the paraxial approximation to exact solutions of the wave equation and application to Gaussian beams
-
A. Wünsche, “Transition from the paraxial approximation to exact solutions of the wave equation and application to Gaussian beams,” J. Opt. Soc. Am. A 9, 765–774 (1992).
-
(1992)
J. Opt. Soc. Am. A
, vol.9
, pp. 765-774
-
-
Wünsche, A.1
-
9
-
-
0032000087
-
Propagation of Hermite–Gaussian-beams beyond the paraxial approximation
-
H. Laabs, “Propagation of Hermite–Gaussian-beams beyond the paraxial approximation,” Opt. Commun. 147, 1–4 (1998).
-
(1998)
Opt. Commun
, vol.147
, pp. 1-4
-
-
Laabs, H.1
-
10
-
-
0001435224
-
Corrections to the paraxial approximation of an arbitrary free-propagation beam
-
Q. Cao and X. Deng, “Corrections to the paraxial approximation of an arbitrary free-propagation beam,” J. Opt. Soc. Am. A 15, 1144–1148 (1998).
-
(1998)
J. Opt. Soc. Am. A
, vol.15
, pp. 1144-1148
-
-
Cao, Q.1
Deng, X.2
-
11
-
-
0001002474
-
Theory of electromagnetic beams
-
L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979).
-
(1979)
Phys. Rev. A
, vol.19
, pp. 1177-1179
-
-
Davis, L.W.1
-
12
-
-
0018478873
-
Complex source-point theory of the electromagnetic open resonator
-
A. L. Cullen and P. K. Yu, “Complex source-point theory of the electromagnetic open resonator,” Proc. R. Soc. London, Ser. A 366, 155–171 (1979).
-
(1979)
Proc. R. Soc. London, Ser. A
, vol.366
, pp. 155-171
-
-
Cullen, A.L.1
Yu, P.K.2
-
13
-
-
0001286836
-
Representation of vector electromagnetic beams
-
D. N. Pattanayak and G. P. Agrawal, “Representation of vector electromagnetic beams,” Phys. Rev. A 22, 1159–1164 (1980).
-
(1980)
Phys. Rev. A
, vol.22
, pp. 1159-1164
-
-
Pattanayak, D.N.1
Agrawal, G.P.2
-
14
-
-
0023220926
-
Cross polarization in laser beams
-
R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Cross polarization in laser beams,” Appl. Opt. 26, 1589–1593 (1987).
-
(1987)
Appl. Opt
, vol.26
, pp. 1589-1593
-
-
Simon, R.1
Sudarshan, E.C.G.2
Mukunda, N.3
-
15
-
-
0001756486
-
Polarization properties of Maxwell–Gaussian laser beams
-
W. L. Erikson and S. Singh, “Polarization properties of Maxwell–Gaussian laser beams,” Phys. Rev. E 49, 5778–5786 (1994).
-
(1994)
Phys. Rev. E
, vol.49
, pp. 5778-5786
-
-
Erikson, W.L.1
Singh, S.2
-
16
-
-
0030258576
-
Exact and approximate solutions of Maxwells equations for a confocal cavity
-
P. Varga and P. Török, “Exact and approximate solutions of Maxwell’s equations for a confocal cavity,” Opt. Lett. 21, 1523–1525 (1996).
-
(1996)
Opt. Lett
, vol.21
, pp. 1523-1525
-
-
Varga, P.1
Török, P.2
-
17
-
-
0032090586
-
The Gaussian wave solution of Maxwells equations and the validity of scalar wave approximation
-
P. Varga and P. Török, “The Gaussian wave solution of Maxwell’s equations and the validity of scalar wave approximation,” Opt. Commun. 152, 108–118 (1998).
-
(1998)
Opt. Commun
, vol.152
, pp. 108-118
-
-
Varga, P.1
Török, P.2
-
19
-
-
0012103398
-
Free-space wave propagation beyond the paraxial approximation
-
G. P. Agrawal and M. Lax, “Free-space wave propagation beyond the paraxial approximation,” Phys. Rev. A 27, 1693–1695 (1983).
-
(1983)
Phys. Rev. A
, vol.27
, pp. 1693-1695
-
-
Agrawal, G.P.1
Lax, M.2
-
20
-
-
0003904786
-
-
3rd ed. (Wiley, New York
-
S. Ramo, J. R. Whinnery, and T. V. Duzer, Fields and Waves in Communication Electronics, 3rd ed. (Wiley, New York, 1994), p. 589.
-
(1994)
Fields and Waves in Communication Electronics
, pp. 589
-
-
Ramo, S.1
Whinnery, J.R.2
Duzer, T.V.3
-
23
-
-
20644442379
-
Confocal multimode resonator for millimeter through optical wavelength masers, Bell Syst
-
G. D. Boyd and J. P. Gordon, “Confocal multimode resonator for millimeter through optical wavelength masers,” Bell Syst. Tech. J. 40, 489–508 (1961).
-
(1961)
Tech. J
, vol.40
, pp. 489-508
-
-
Boyd, G.D.1
Gordon, J.P.2
-
24
-
-
84938451651
-
Laser beams and resonators
-
H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966).
-
(1966)
Proc. IEEE
, vol.54
, pp. 1312-1329
-
-
Kogelnik, H.1
Li, T.2
|