-
1
-
-
84874962985
-
Convexity and commuting Hamiltonians
-
M. F. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 308 (1982), 1-15.
-
(1982)
Bull. London Math. Soc.
, vol.308
, pp. 1-15
-
-
Atiyah, M.F.1
-
4
-
-
84974294104
-
A remark on the generalized numerical range of a normal matrix
-
Y. H. Au-Yeung and F. Y. Sing, A remark on the generalized numerical range of a normal matrix, Glasgow Math. J. 18 (1977), 179-180.
-
(1977)
Glasgow Math. J.
, vol.18
, pp. 179-180
-
-
Au-Yeung, Y.H.1
Sing, F.Y.2
-
6
-
-
84966234626
-
An extension of the Hausdorff-Toeplitz theorem on the numerical range
-
Y. H. Au-Yeung and N. K. Tsing, An extension of the Hausdorff-Toeplitz theorem on the numerical range, Proc. Amer. Math. Soc. 89 (1983), 215-218.
-
(1983)
Proc. Amer. Math. Soc.
, vol.89
, pp. 215-218
-
-
Au-Yeung, Y.H.1
Tsing, N.K.2
-
7
-
-
0346547969
-
A conjecture of Marcus on the generalized numerical range
-
Y. H. Au-Yeung and N. K. Tsing, A conjecture of Marcus on the generalized numerical range, Linear and Multilinear Algebra 14 (1983), 235-239.
-
(1983)
Linear and Multilinear Algebra
, vol.14
, pp. 235-239
-
-
Au-Yeung, Y.H.1
Tsing, N.K.2
-
8
-
-
0004065181
-
-
Ph.D. Dissertation Cornell University
-
C. A. Berger, Normal Dilations, Ph.D. Dissertation Cornell University, 1963.
-
(1963)
Normal Dilations
-
-
Berger, C.A.1
-
9
-
-
26444543281
-
Some geometric properties of the c-numerical range of a normal matrix
-
N. Bebiano and J. D. Providéncia, Some geometric properties of the c-numerical range of a normal matrix, Linear and Multilinear Algebra 37 (1994), 83-92.
-
(1994)
Linear and Multilinear Algebra
, vol.37
, pp. 83-92
-
-
Bebiano, N.1
Providéncia, J.D.2
-
10
-
-
0347735078
-
Another proof of a conjecture of Mancus on the c-numerical range
-
N. Bebiano and J. D. Providéncia, Another proof of a conjecture of Mancus on the c-numerical range, Linear and Multilinear Algebra 41 (1996), 35-40.
-
(1996)
Linear and Multilinear Algebra
, vol.41
, pp. 35-40
-
-
Bebiano, N.1
Providéncia, J.D.2
-
11
-
-
21444452075
-
The C-numerical range of matrices is star-shaped
-
W. S. Cheung and N. K. Tsing, The C-numerical range of matrices is star-shaped, Linear and Multilinear Algebra 41 (1996), 245-250.
-
(1996)
Linear and Multilinear Algebra
, vol.41
, pp. 245-250
-
-
Cheung, W.S.1
Tsing, N.K.2
-
13
-
-
0000130163
-
Der Wertvorrat einer Bilinearform
-
F. Hausdorff, Der Wertvorrat einer Bilinearform, Math Z. 3 (1919), 314-316.
-
(1919)
Math Z.
, vol.3
, pp. 314-316
-
-
Hausdorff, F.1
-
14
-
-
0347104712
-
-
Academic Press, New York
-
S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978.
-
Differential Geometry, Lie Groups and Symmetric Spaces
, vol.1
, pp. 978
-
-
Helgason, S.1
-
15
-
-
0347735077
-
A note on the shape of the generalized numerical range
-
G. Hugnes, A note on the shape of the generalized numerical range, Linear and Multilinear Algebra 26 (1990), 43-47.
-
(1990)
Linear and Multilinear Algebra
, vol.26
, pp. 43-47
-
-
Hugnes, G.1
-
16
-
-
0345843578
-
A note on the shape of the generalized C-numerical range
-
M. S. Jones, A note on the shape of the generalized C-numerical range, Linear and Multilinear Algebra 31 (1992), 81-84.
-
(1992)
Linear and Multilinear Algebra
, vol.31
, pp. 81-84
-
-
Jones, M.S.1
-
19
-
-
0000368974
-
On convexity, the Weyl group and Iwasawa decomposition
-
B. Kostant, On convexity, the Weyl group and Iwasawa decomposition, Ann. Sci. École Norm. Sup. (4) 6 (1973), 413-460.
-
(1973)
Ann. Sci. École Norm. Sup. (4)
, vol.6
, pp. 413-460
-
-
Kostant, B.1
-
20
-
-
79551700029
-
C-Numerical ranges and C-numerical radii
-
C. K. Li, C-Numerical ranges and C-numerical radii, Linear and Multilinear Algebra 37 (1994), 51-82.
-
(1994)
Linear and Multilinear Algebra
, vol.37
, pp. 51-82
-
-
Li, C.K.1
-
21
-
-
0345843579
-
Numerical ranges arising from simple Lie algebras
-
to appear
-
C. K. Li and T. Y. Tam, Numerical ranges arising from simple Lie algebras, Canad. J. Math. to appear.
-
Canad. J. Math.
-
-
Li, C.K.1
Tam, T.Y.2
-
22
-
-
0347735075
-
Some combinatorial aspects of numerical range
-
M. Marcus, Some combinatorial aspects of numerical range, Ann. New York Acad. Sci. 319 (1979), 368-376.
-
(1979)
Ann. New York Acad. Sci.
, vol.319
, pp. 368-376
-
-
Marcus, M.1
-
24
-
-
0009966022
-
Another proof of a result of Westwick
-
Y. T. Poon, Another proof of a result of Westwick, Linear and Multilinear Algebra 9 (1980), 35-37.
-
(1980)
Linear and Multilinear Algebra
, vol.9
, pp. 35-37
-
-
Poon, Y.T.1
-
26
-
-
0347735076
-
Convexity of generalized numerical range associated with a compact Lie group
-
to appear
-
T. Y. Tam, Convexity of generalized numerical range associated with a compact Lie group, J. Austral. Math. Soc. Ser. A., to appear.
-
J. Austral. Math. Soc. Ser. A.
-
-
Tam, T.Y.1
-
27
-
-
34250972218
-
Das algebraishe Analogen zu einem Satze von Fejér
-
O. Toeplitz, Das algebraishe Analogen zu einem Satze von Fejér, Math. Z. 2 (1918), 187-197.
-
(1918)
Math. Z.
, vol.2
, pp. 187-197
-
-
Toeplitz, O.1
-
28
-
-
0346547961
-
On the shape of the generalized numerical range
-
N. K. Tsing, On the shape of the generalized numerical range, Linear and Multilinear Algebra 10 (1981), 173-182.
-
(1981)
Linear and Multilinear Algebra
, vol.10
, pp. 173-182
-
-
Tsing, N.K.1
|