-
2
-
-
0002886433
-
Gap labelling theorems for Schrödinger operators
-
Eds. M. Waldschmidt, P. Moussa, J.-M. Luck and C. Itzykson. Springer, Berlin
-
J. Bellissard. Gap labelling theorems for Schrödinger operators. From Number Theory to Physics. Eds. M. Waldschmidt, P. Moussa, J.-M. Luck and C. Itzykson. Springer, Berlin, 1992, pp. 538-630.
-
(1992)
From Number Theory to Physics
, pp. 538-630
-
-
Bellissard, J.1
-
4
-
-
51249180842
-
A unique ergodicity of minimal symbolic flows with linear block growth
-
M. Boshernitzan. A unique ergodicity of minimal symbolic flows with linear block growth. J. Anal. Math. 44 (1984/85), 77-96.
-
(1984)
J. Anal. Math.
, vol.44
, pp. 77-96
-
-
Boshernitzan, M.1
-
5
-
-
0002029548
-
Sequences with minimal block growth
-
E. M. Coven. Sequences with minimal block growth. Math. Syst. Th. 8 (1975), 376-382.
-
(1975)
Math. Syst. Th.
, vol.8
, pp. 376-382
-
-
Coven, E.M.1
-
6
-
-
0000060895
-
Sequences with minimal block growth
-
E. M. Coven and G. A. Hedlund. Sequences with minimal block growth. Math. Syst. Th. 7 (1973), 138- 153.
-
(1973)
Math. Syst. Th.
, vol.7
, pp. 138-153
-
-
Coven, E.M.1
Hedlund, G.A.2
-
7
-
-
0001555272
-
A local criterion for regularity of a system of points
-
B. N. Delone [B. N. Delaunay], N. P. Dolbilin, M. I. Shtogrin and R. V. Galiulin. A local criterion for regularity of a system of points. Sov. Math. Dokl. 17(2) (1976), 319-322.
-
(1976)
Sov. Math. Dokl.
, vol.17
, Issue.2
, pp. 319-322
-
-
Delone, B.N.1
Dolbilin, N.P.2
Shtogrin, M.I.3
Galiulin, R.V.4
-
10
-
-
24944556383
-
The diffraction pattern of projected structures
-
V. Elser. The diffraction pattern of projected structures. Acta Cryst. Sect. A 42 (1986) 36-43.
-
(1986)
Acta Cryst. Sect. A
, vol.42
, pp. 36-43
-
-
Elser, V.1
-
11
-
-
0030502249
-
Rank and symbolic complexity
-
S. Ferenczi. Rank and symbolic complexity. Ergod. Th. & Dynam. Sys. 16 (1996), 663-682.
-
(1996)
Ergod. Th. & Dynam. Sys.
, vol.16
, pp. 663-682
-
-
Ferenczi, S.1
-
12
-
-
33646727744
-
Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation
-
H. Furstenberg. Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Syst. Th. 1 (1967), 1-49.
-
(1967)
Math. Syst. Th.
, vol.1
, pp. 1-49
-
-
Furstenberg, H.1
-
14
-
-
0037823560
-
The diffraction pattern of self-similar tilings
-
Ed. V. Moody. Kluwer, Dordrecht
-
F. Gähler and R. Klitzing. The diffraction pattern of self-similar tilings. The Mathematics of Long-Range Aperiodic Order. Ed. V. Moody. Kluwer, Dordrecht, 1997, pp. 141-174.
-
(1997)
The Mathematics of Long-range Aperiodic Order
, pp. 141-174
-
-
Gähler, F.1
Klitzing, R.2
-
15
-
-
0030151441
-
Quasicrystalline materials
-
A. I. Goldman et al Quasicrystalline materials. Amer. Scient. 84 (1996), 230-241.
-
(1996)
Amer. Scient.
, vol.84
, pp. 230-241
-
-
Goldman, A.I.1
-
17
-
-
0002754401
-
Random tiling models
-
Eds. D. P. DiVincenzo and P. J. Steinhardt. World Scientific, Singapore
-
C. L. Henley. Random tiling models. Quasicrystals: The State of the Art. Eds. D. P. DiVincenzo and P. J. Steinhardt. World Scientific, Singapore, 1991, pp. 429-524.
-
(1991)
Quasicrystals: The State of the Art
, pp. 429-524
-
-
Henley, C.L.1
-
18
-
-
21844524319
-
On diffraction by aperiodic structures
-
A. Hof. On diffraction by aperiodic structures. Commun. Math. Phys. 169 (1995), 25-43.
-
(1995)
Commun. Math. Phys.
, vol.169
, pp. 25-43
-
-
Hof, A.1
-
19
-
-
0002492934
-
Diffraction by aperiodic structures
-
Ed. R. V. Moody. Kluwer, Dordrecht
-
A. Hof. Diffraction by aperiodic structures. The Mathematics of Long-Range Aperiodic Order. Ed. R. V. Moody. Kluwer, Dordrecht, 1997, pp. 239-268.
-
(1997)
The Mathematics of Long-range Aperiodic Order
, pp. 239-268
-
-
Hof, A.1
-
20
-
-
0004208396
-
-
Clarendon Press, Oxford (2nd edn 1994)
-
C. Janot. Quasicrystals: a Primer. Clarendon Press, Oxford, 1992 (2nd edn 1994).
-
(1992)
Quasicrystals: A Primer
-
-
Janot, C.1
-
21
-
-
0000000958
-
Self-replicating tilings
-
Ed. P. Walters. American Mathematical Society, Providence, RI
-
R. Kenyon. Self-replicating tilings. Symbolic Dynamics and its Applications. Ed. P. Walters. American Mathematical Society, Providence, RI, 1992, pp. 239-264.
-
(1992)
Symbolic Dynamics and its Applications
, pp. 239-264
-
-
Kenyon, R.1
-
22
-
-
0030556295
-
The construction of self-similar tilings
-
R. Kenyon. The construction of self-similar tilings. Geom. Funct. Anal. 6 (1996), 471-488.
-
(1996)
Geom. Funct. Anal.
, vol.6
, pp. 471-488
-
-
Kenyon, R.1
-
23
-
-
0007882984
-
Structure factor of ID systems (superlattices) based on two-letter substitution rules: I. δ (Bragg) peaks
-
M. Kolář, B. Iochum and L. Raymond. Structure factor of ID systems (superlattices) based on two-letter substitution rules: I. δ (Bragg) peaks. J. Phys. A 26 (1993), 7343-7366.
-
(1993)
J. Phys. A
, vol.26
, pp. 7343-7366
-
-
Kolář, M.1
Iochum, B.2
Raymond, L.3
-
24
-
-
0030210212
-
Meyer's concept of quasicrystal and quasiregular sets
-
J. C. Lagarias. Meyer's concept of quasicrystal and quasiregular sets. Commun. Math. Phys. 179 (1996), 365-376.
-
(1996)
Commun. Math. Phys.
, vol.179
, pp. 365-376
-
-
Lagarias, J.C.1
-
25
-
-
0033478409
-
Geometric models for quasicrystals I. Delone sets of finite type
-
J. C. Lagarias. Geometric models for quasicrystals I. Delone sets of finite type. Discrete Comput. Geom. 21(1999), 161-191.
-
(1999)
Discrete Comput. Geom.
, vol.21
, pp. 161-191
-
-
Lagarias, J.C.1
-
26
-
-
0033423088
-
Geometric models for quasicrystals II. Local rules under isometries
-
J. C. Lagarias. Geometric models for quasicrystals II. Local rules under isometries. Discrete Comput. Geom. 21 (1999), 345-372.
-
(1999)
Discrete Comput. Geom.
, vol.21
, pp. 345-372
-
-
Lagarias, J.C.1
-
27
-
-
0036898223
-
Local complexity of Delone sets and crystallinity
-
J. C. Lagarias and P. A. B. Pleasants. Local complexity of Delone sets and crystallinity. Canad. Math. Bull. 45(4) (2002), 634-652.
-
(2002)
Canad. Math. Bull.
, vol.45
, Issue.4
, pp. 634-652
-
-
Lagarias, J.C.1
Pleasants, P.A.B.2
-
30
-
-
1642345030
-
Aperiodic linearly repetitive Delone sets are densely repetitive
-
to appear
-
D. Lenz. Aperiodic linearly repetitive Delone sets are densely repetitive. Discrete Comput. Geom. to appear.
-
Discrete Comput. Geom.
-
-
Lenz, D.1
-
32
-
-
0010724358
-
The entropies of topological Markov shifts and a related class of algebraic integers
-
D. A. Lind. The entropies of topological Markov shifts and a related class of algebraic integers. Ergod. Th. & Dynam. Sys. 4 (1984), 283-300.
-
(1984)
Ergod. Th. & Dynam. Sys.
, vol.4
, pp. 283-300
-
-
Lind, D.A.1
-
33
-
-
38249010974
-
Matrices of Perron numbers
-
D. A. Lind. Matrices of Perron numbers. J. Number Th. 40 (1992), 211-217.
-
(1992)
J. Number Th.
, vol.40
, pp. 211-217
-
-
Lind, D.A.1
-
37
-
-
0012335790
-
-
Springer, Berlin
-
Y. Meyer. Nombres de Pisot, nombres de Salem, et analyse harmonique (Lecture Notes in Mathematics, 117). Springer, Berlin, 1970.
-
(1970)
Nombres de Pisot, Nombres de Salem, et Analyse Harmonique (Lecture Notes in Mathematics, 117)
, vol.117
-
-
Meyer, Y.1
-
39
-
-
0037848342
-
Quasicrystals, Diophantine approximation and algebraic numbers
-
Eds. F. Axel and D. Gratias. Springer: Berlin
-
Y. Meyer. Quasicrystals, Diophantine approximation and algebraic numbers. Beyond Quasicrystals. Eds. F. Axel and D. Gratias. Springer: Berlin, 1995, pp. 3-16.
-
(1995)
Beyond Quasicrystals
, pp. 3-16
-
-
Meyer, Y.1
-
40
-
-
0037486032
-
Meyer sets and the finite generation of quasicrystals
-
Ed. P. M. Gruber. Plenum, London
-
R. V. Moody. Meyer sets and the finite generation of quasicrystals. Symmetries in Science VIII. Ed. P. M. Gruber. Plenum, London, 1995.
-
(1995)
Symmetries in Science VIII
-
-
Moody, R.V.1
-
41
-
-
0002421044
-
Meyer sets and their duals
-
Ed. R. V. Moody. Kluwer, Dordrecht
-
R. V. Moody. Meyer sets and their duals. The Mathematics of Long-Range Aperiodic Order. Ed. R. V. Moody. Kluwer, Dordrecht, 1997, pp. 403-442.
-
(1997)
The Mathematics of Long-range Aperiodic Order
, pp. 403-442
-
-
Moody, R.V.1
-
42
-
-
0038580083
-
Colourings of quasicrystals
-
R. V. Moody and J. Patera. Colourings of quasicrystals. Canad. J. Phys. 72 (1995), 442-452.
-
(1995)
Canad. J. Phys.
, vol.72
, pp. 442-452
-
-
Moody, R.V.1
Patera, J.2
-
44
-
-
0001788272
-
Symbolic dynamics II, Sturmian trajectories
-
M. Morse and G. A. Hedlund. Symbolic dynamics II, Sturmian trajectories. Amer. J. Math. 62 (1940), 1-42.
-
(1940)
Amer. J. Math.
, vol.62
, pp. 1-42
-
-
Morse, M.1
Hedlund, G.A.2
-
45
-
-
51249177806
-
Tilings, substitution systems and dynamical systems generated by them
-
S. Mozes. Tilings, substitution systems and dynamical systems generated by them. J. Anal. Math. 53 (1989), 139-186.
-
(1989)
J. Anal. Math.
, vol.53
, pp. 139-186
-
-
Mozes, S.1
-
46
-
-
0002189446
-
A geometric approach to quasiperiodic tilings
-
C. Oguey, M. Duneau and A. Katz. A geometric approach to quasiperiodic tilings. Commun. Math. Phys. 118 (1988), 99-118.
-
(1988)
Commun. Math. Phys.
, vol.118
, pp. 99-118
-
-
Oguey, C.1
Duneau, M.2
Katz, A.3
-
47
-
-
0004233869
-
-
Cambridge University Press, Cambridge
-
W. Parry. Topics in Ergodic Theory. Cambridge University Press, Cambridge, 1981.
-
(1981)
Topics in Ergodic Theory
-
-
Parry, W.1
-
48
-
-
0002029544
-
Minimal symbolic flows having minimal block growth
-
E. M. Paul. Minimal symbolic flows having minimal block growth. Math. Syst. Th. 8 (1975), 309-315.
-
(1975)
Math. Syst. Th.
, vol.8
, pp. 309-315
-
-
Paul, E.M.1
-
49
-
-
0003831421
-
-
Cambridge University Press, Cambridge
-
K. Petersen. Ergodic Theory. Cambridge University Press, Cambridge, 1983.
-
(1983)
Ergodic Theory
-
-
Petersen, K.1
-
50
-
-
0000498157
-
Designer quasicrystals: Cut-and-project sets with pre-assigned properties
-
Eds M. Baake and R. V. Moody. American Mathematical Society, Providence, RI
-
P. A. B. Pleasants. Designer quasicrystals: cut-and-project sets with pre-assigned properties. Directions in Mathematical Quasicrystals (CRM Monograph Series). Eds M. Baake and R. V. Moody. American Mathematical Society, Providence, RI, 2000.
-
(2000)
Directions in Mathematical Quasicrystals (CRM Monograph Series)
-
-
Pleasants, P.A.B.1
-
53
-
-
0001858345
-
Spectral study of automatic and substitutive sequences
-
Eds F. Axel and D. Gratias. Springer, Berlin
-
M. Queffelec. Spectral study of automatic and substitutive sequences. Beyond Quasicrystals. Eds F. Axel and D. Gratias. Springer, Berlin, 1995, pp. 369-414.
-
(1995)
Beyond Quasicrystals
, pp. 369-414
-
-
Queffelec, M.1
-
54
-
-
0009272116
-
Disordered ground states for classical lattice models
-
C. Radin. Disordered ground states for classical lattice models. Rev. Math. Phys. 3 (1991), 125-135.
-
(1991)
Rev. Math. Phys.
, vol.3
, pp. 125-135
-
-
Radin, C.1
-
55
-
-
84967707576
-
Global order from local sources
-
C. Radin. Global order from local sources. Bull. Amer. Math. Soc. 25 (1991), 335-364.
-
(1991)
Bull. Amer. Math. Soc.
, vol.25
, pp. 335-364
-
-
Radin, C.1
-
56
-
-
0001905919
-
Space tilings and local isomorphism
-
C. Radin and M. Wolff. Space tilings and local isomorphism. Geom. Dedicata 42 (1992), 355-360.
-
(1992)
Geom. Dedicata
, vol.42
, pp. 355-360
-
-
Radin, C.1
Wolff, M.2
-
58
-
-
0009234666
-
The dynamical theory of tilings and quasicrystallography
-
Eds. M. Pollicott and K. Schmidt. Cambridge University Press, Cambridge
-
d-Actions (London Mathematical Society Lecture Notes, 228). Eds. M. Pollicott and K. Schmidt. Cambridge University Press, Cambridge, 1996, pp. 451-473.
-
(1996)
d-actions (London Mathematical Society Lecture Notes, 228)
, vol.228
, pp. 451-473
-
-
Robinson E.A., Jr.1
-
59
-
-
21444449126
-
The dynamical properties of Penrose tilings
-
E. A. Robinson, Jr. The dynamical properties of Penrose tilings, Trans. Amer. Math. Soc. 348 (1996), 4447-4464.
-
(1996)
Trans. Amer. Math. Soc.
, vol.348
, pp. 4447-4464
-
-
Robinson E.A., Jr.1
-
60
-
-
0000112667
-
The complexity of functions on lattices
-
J. W. Sander and R. Tijdeman. The complexity of functions on lattices. Th. Comput. Sci. 246 (2000), 195-225.
-
(2000)
Th. Comput. Sci.
, vol.246
, pp. 195-225
-
-
Sander, J.W.1
Tijdeman, R.2
-
61
-
-
0037028451
-
The rectangle complexity of functions on two-dimensional lattices
-
J. W. Sander and R. Tijdeman. The rectangle complexity of functions on two-dimensional lattices. Th. Comput. Sci. 270 (2002), 857-863.
-
(2002)
Th. Comput. Sci.
, vol.270
, pp. 857-863
-
-
Sander, J.W.1
Tijdeman, R.2
-
63
-
-
0001291170
-
Cut and project sets in locally compact Abelian groups
-
Ed. J. Patera. American Mathematical Society, Providence, RI
-
M. Schlottmann. Cut and project sets in locally compact Abelian groups. Quasicrystals and Discrete Geometry (Fields Institute Monographs, 10). Ed. J. Patera. American Mathematical Society, Providence, RI, 1998, pp. 247-264.
-
(1998)
Quasicrystals and Discrete Geometry (Fields Institute Monographs, 10)
, vol.10
, pp. 247-264
-
-
Schlottmann, M.1
-
64
-
-
0039276922
-
Approximations diophantiennes et problems additifs dans les groupes abéliens localement compacts
-
J.-P. Schreiber. Approximations diophantiennes et problems additifs dans les groupes abéliens localement compacts. Bull. Soc. Math. France 101 (1973), 297-332.
-
(1973)
Bull. Soc. Math. France
, vol.101
, pp. 297-332
-
-
Schreiber, J.-P.1
-
66
-
-
33845570426
-
Continued fractions with bounded partial quotients: A survey
-
J. O. Shallit. Continued fractions with bounded partial quotients: a survey. Enseign. Math. 38 (1992), 151-187.
-
(1992)
Enseign. Math.
, vol.38
, pp. 151-187
-
-
Shallit, J.O.1
-
67
-
-
0031506167
-
Dynamics of self-similar tilings
-
B. Solomyak. Dynamics of self-similar tilings. Ergod. Th. & Dynam. Sys. 17 (1997), 695-738.
-
(1997)
Ergod. Th. & Dynam. Sys.
, vol.17
, pp. 695-738
-
-
Solomyak, B.1
-
68
-
-
0040350273
-
Nonperiodicity implies unique composition for self-similar translationally finite tilings
-
B. Solomyak. Nonperiodicity implies unique composition for self-similar translationally finite tilings. Discrete Comput. Geom. 20 (1998), 265-279.
-
(1998)
Discrete Comput. Geom.
, vol.20
, pp. 265-279
-
-
Solomyak, B.1
-
69
-
-
0010772333
-
Spectrum of dynamical systems arising from Delone sets
-
Ed. J. Patera. American Mathematical Society, Providence, RI
-
B. Solomyak. Spectrum of dynamical systems arising from Delone sets. Quasicrystals and Discrete Geometry (Fields Institute Monographs, 10). Ed. J. Patera. American Mathematical Society, Providence, RI, 1998, pp. 265-275.
-
(1998)
Quasicrystals and Discrete Geometry (Fields Institute Monographs, 10)
, vol.10
, pp. 265-275
-
-
Solomyak, B.1
-
70
-
-
0000821829
-
Conway's tiling groups
-
W. Thurston. Conway's tiling groups. Amer. Math. Monthly 97 (1990), 757-773.
-
(1990)
Amer. Math. Monthly
, vol.97
, pp. 757-773
-
-
Thurston, W.1
|