메뉴 건너뛰기




Volumn 22, Issue 2, 2001, Pages 376-391

On the iterative solution of a class of nonsymmetric algebraic Riccati equations

Author keywords

Convergence rate; Fixed point iterations; M matrices; Minimal positive solution; Newton's method; Nonsymmetric algebraic Riccati equations

Indexed keywords


EID: 0041410017     PISSN: 08954798     EISSN: None     Source Type: Journal    
DOI: 10.1137/S089547989834980X     Document Type: Article
Times cited : (127)

References (21)
  • 1
    • 84976855597 scopus 로고
    • Solution of the matrix equation AX + XB = C
    • R. H. BARTELS AND G. W. STEWART, Solution of the matrix equation AX + XB = C, Comm. ACM, 15 (1972), pp. 820-826.
    • (1972) Comm. ACM , vol.15 , pp. 820-826
    • Bartels, R.H.1    Stewart, G.W.2
  • 4
    • 0023168874 scopus 로고
    • Three methods for refining estimates of invariant subspaces
    • J. W. DEMMEL, Three methods for refining estimates of invariant subspaces, Computing, 38 (1987), pp. 43-57.
    • (1987) Computing , vol.38 , pp. 43-57
    • Demmel, J.W.1
  • 5
    • 0000803454 scopus 로고
    • On matrices with non-positive off-diagonal elements and positive principal minors
    • M. FIEDLER AND V. PTAK, On matrices with non-positive off-diagonal elements and positive principal minors, Czechoslovak Math. J., 12 (1962), pp. 382-400.
    • (1962) Czechoslovak Math. J. , vol.12 , pp. 382-400
    • Fiedler, M.1    Ptak, V.2
  • 6
    • 0018721357 scopus 로고
    • A Hessenberg-Schur method for the problem AX + XB = C
    • G. H. GOLUB, S. NASH, AND C. VAN LOAN, A Hessenberg-Schur method for the problem AX + XB = C, IEEE Trans. Automat. Control, 24 (1979), pp. 909-913.
    • (1979) IEEE Trans. Automat. Control , vol.24 , pp. 909-913
    • Golub, G.H.1    Nash, S.2    Van Loan, C.3
  • 8
    • 0032364897 scopus 로고    scopus 로고
    • Analysis and modification of Newton's method for algebraic Riccati equations
    • C.-H. GUO AND P. LANCASTER, Analysis and modification of Newton's method for algebraic Riccati equations, Math. Comp., 67 (1998), pp. 1089-1105.
    • (1998) Math. Comp. , vol.67 , pp. 1089-1105
    • Guo, C.-H.1    Lancaster, P.2
  • 9
    • 21844486150 scopus 로고
    • Existence of algebraic matrix Riccati equations arising in transport theory
    • J. JUANG, Existence of algebraic matrix Riccati equations arising in transport theory, Linear Algebra Appl., 230 (1995), pp. 89-100.
    • (1995) Linear Algebra Appl. , vol.230 , pp. 89-100
    • Juang, J.1
  • 10
    • 0032217347 scopus 로고    scopus 로고
    • Nonsymmetric algebraic Riccati equations and Hamiltonian-like. matrices
    • J. JUANG AND W.-W. LIN, Nonsymmetric algebraic Riccati equations and Hamiltonian-like. matrices, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 228-243.
    • (1999) SIAM J. Matrix Anal. Appl. , vol.20 , pp. 228-243
    • Juang, J.1    Lin, W.-W.2
  • 12
    • 84966213341 scopus 로고
    • A Shamanskii-like acceleration scheme for nonlinear equations at singular roots
    • C. T. KELLEY, A Shamanskii-like acceleration scheme for nonlinear equations at singular roots, Math. Comp., 47 (1986), pp. 609-623.
    • (1986) Math. Comp. , vol.47 , pp. 609-623
    • Kelley, C.T.1
  • 16
    • 0018681625 scopus 로고
    • A Schur method for solving algebraic Riccati equations
    • A. J. LAUB, A Schur method for solving algebraic Riccati equations, IEEE Trans. Automat. Control, 24 (1979), pp. 913-921.
    • (1979) IEEE Trans. Automat. Control , vol.24 , pp. 913-921
    • Laub, A.J.1
  • 17
    • 84966225158 scopus 로고
    • An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix
    • J. A. MEIJERINK AND H. A. VAN DER VORST, An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix, Math. Comp., 31 (1977), pp. 148-162.
    • (1977) Math. Comp. , vol.31 , pp. 148-162
    • Meijerink, J.A.1    Van Der Vorst, H.A.2
  • 18
    • 0016896171 scopus 로고
    • The matrix equation AZ + B - ZCZ - ZD = 0
    • H.-B. MEYER, The matrix equation AZ + B - ZCZ - ZD = 0, SIAM J. Appl. Math., 30 (1976), pp. 136-142.
    • (1976) SIAM J. Appl. Math. , vol.30 , pp. 136-142
    • Meyer, H.-B.1
  • 20
    • 0007181453 scopus 로고
    • Newton's method for convex operators in partially ordered spaces
    • J. S. VANDERGRAFT, Newton's method for convex operators in partially ordered spaces, SIAM J. Numer. Anal., 4 (1967), pp. 406-432.
    • (1967) SIAM J. Numer. Anal. , vol.4 , pp. 406-432
    • Vandergraft, J.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.