-
1
-
-
84976855597
-
Solution of the matrix equation AX + XB = C
-
R. H. BARTELS AND G. W. STEWART, Solution of the matrix equation AX + XB = C, Comm. ACM, 15 (1972), pp. 820-826.
-
(1972)
Comm. ACM
, vol.15
, pp. 820-826
-
-
Bartels, R.H.1
Stewart, G.W.2
-
4
-
-
0023168874
-
Three methods for refining estimates of invariant subspaces
-
J. W. DEMMEL, Three methods for refining estimates of invariant subspaces, Computing, 38 (1987), pp. 43-57.
-
(1987)
Computing
, vol.38
, pp. 43-57
-
-
Demmel, J.W.1
-
5
-
-
0000803454
-
On matrices with non-positive off-diagonal elements and positive principal minors
-
M. FIEDLER AND V. PTAK, On matrices with non-positive off-diagonal elements and positive principal minors, Czechoslovak Math. J., 12 (1962), pp. 382-400.
-
(1962)
Czechoslovak Math. J.
, vol.12
, pp. 382-400
-
-
Fiedler, M.1
Ptak, V.2
-
6
-
-
0018721357
-
A Hessenberg-Schur method for the problem AX + XB = C
-
G. H. GOLUB, S. NASH, AND C. VAN LOAN, A Hessenberg-Schur method for the problem AX + XB = C, IEEE Trans. Automat. Control, 24 (1979), pp. 909-913.
-
(1979)
IEEE Trans. Automat. Control
, vol.24
, pp. 909-913
-
-
Golub, G.H.1
Nash, S.2
Van Loan, C.3
-
7
-
-
0004236492
-
-
Johns Hopkins University Press, Baltimore, MD
-
G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, 3rd ed., Johns Hopkins University Press, Baltimore, MD, 1996.
-
(1996)
Matrix Computations, 3rd Ed.
-
-
Golub, G.H.1
Van Loan, C.F.2
-
8
-
-
0032364897
-
Analysis and modification of Newton's method for algebraic Riccati equations
-
C.-H. GUO AND P. LANCASTER, Analysis and modification of Newton's method for algebraic Riccati equations, Math. Comp., 67 (1998), pp. 1089-1105.
-
(1998)
Math. Comp.
, vol.67
, pp. 1089-1105
-
-
Guo, C.-H.1
Lancaster, P.2
-
9
-
-
21844486150
-
Existence of algebraic matrix Riccati equations arising in transport theory
-
J. JUANG, Existence of algebraic matrix Riccati equations arising in transport theory, Linear Algebra Appl., 230 (1995), pp. 89-100.
-
(1995)
Linear Algebra Appl.
, vol.230
, pp. 89-100
-
-
Juang, J.1
-
10
-
-
0032217347
-
Nonsymmetric algebraic Riccati equations and Hamiltonian-like. matrices
-
J. JUANG AND W.-W. LIN, Nonsymmetric algebraic Riccati equations and Hamiltonian-like. matrices, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 228-243.
-
(1999)
SIAM J. Matrix Anal. Appl.
, vol.20
, pp. 228-243
-
-
Juang, J.1
Lin, W.-W.2
-
12
-
-
84966213341
-
A Shamanskii-like acceleration scheme for nonlinear equations at singular roots
-
C. T. KELLEY, A Shamanskii-like acceleration scheme for nonlinear equations at singular roots, Math. Comp., 47 (1986), pp. 609-623.
-
(1986)
Math. Comp.
, vol.47
, pp. 609-623
-
-
Kelley, C.T.1
-
13
-
-
0003568896
-
-
Wolters-Noordhoff Publishing, Groningen, The Netherlands
-
M. A. KRASNOSELSKII, G. M. VAINIKKO, P. P. ZABREIKO, YA. B. RUTITSKII, AND V. YA. STETSENKO, Approximate Solution of Operator Equations, Wolters-Noordhoff Publishing, Groningen, The Netherlands, 1972.
-
(1972)
Approximate Solution of Operator Equations
-
-
Krasnoselskii, M.A.1
Vainikko, G.M.2
Zabreiko, P.P.3
Rutitskii, Ya.B.4
Stetsenko, V.Ya.5
-
15
-
-
0004293156
-
-
Academic Press, Orlando, FL
-
P. LANCASTER AND M. TISMENETSKY, The Theory of Matrices, 2nd ed., Academic Press, Orlando, FL, 1985.
-
(1985)
The Theory of Matrices, 2nd Ed.
-
-
Lancaster, P.1
Tismenetsky, M.2
-
16
-
-
0018681625
-
A Schur method for solving algebraic Riccati equations
-
A. J. LAUB, A Schur method for solving algebraic Riccati equations, IEEE Trans. Automat. Control, 24 (1979), pp. 913-921.
-
(1979)
IEEE Trans. Automat. Control
, vol.24
, pp. 913-921
-
-
Laub, A.J.1
-
17
-
-
84966225158
-
An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix
-
J. A. MEIJERINK AND H. A. VAN DER VORST, An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix, Math. Comp., 31 (1977), pp. 148-162.
-
(1977)
Math. Comp.
, vol.31
, pp. 148-162
-
-
Meijerink, J.A.1
Van Der Vorst, H.A.2
-
18
-
-
0016896171
-
The matrix equation AZ + B - ZCZ - ZD = 0
-
H.-B. MEYER, The matrix equation AZ + B - ZCZ - ZD = 0, SIAM J. Appl. Math., 30 (1976), pp. 136-142.
-
(1976)
SIAM J. Appl. Math.
, vol.30
, pp. 136-142
-
-
Meyer, H.-B.1
-
20
-
-
0007181453
-
Newton's method for convex operators in partially ordered spaces
-
J. S. VANDERGRAFT, Newton's method for convex operators in partially ordered spaces, SIAM J. Numer. Anal., 4 (1967), pp. 406-432.
-
(1967)
SIAM J. Numer. Anal.
, vol.4
, pp. 406-432
-
-
Vandergraft, J.S.1
|