-
1
-
-
0002286883
-
Variations on a scheme of McFarland for noncyclic difference sets
-
Dillon J. F. Variations on a scheme of McFarland for noncyclic difference sets. J. Combin. Theory A. 40:1985;9-20.
-
(1985)
J. Combin. Theory A
, vol.40
, pp. 9-20
-
-
Dillon, J.F.1
-
2
-
-
0031570642
-
Cocyclic Hadamard matrices and Hadamard groups are equivalent
-
Flannery D. L. Cocyclic Hadamard matrices and Hadamard groups are equivalent. J. Algebra. 192:1997;749-779.
-
(1997)
J. Algebra
, vol.192
, pp. 749-779
-
-
Flannery, D.L.1
-
5
-
-
0000720098
-
Resolution d'une question relative aux determinants
-
Hadamard J. Resolution d'une question relative aux determinants. Bull. Sci. Math. 17:1893;240-246.
-
(1893)
Bull. Sci. Math.
, vol.17
, pp. 240-246
-
-
Hadamard, J.1
-
8
-
-
0003482808
-
-
Berlin/Heidelberg: Springer-Verlag
-
Huppert B. Endliche Gruppen I. 1967;Springer-Verlag, Berlin/Heidelberg.
-
(1967)
Endliche Gruppen I
-
-
Huppert, B.1
-
9
-
-
0000778285
-
On Hadamard groups
-
Ito N. On Hadamard groups. J. Algebra. 168:1994;981-987.
-
(1994)
J. Algebra
, vol.168
, pp. 981-987
-
-
Ito, N.1
-
10
-
-
0000778286
-
On Hadamard groups, II
-
Ito N. On Hadamard groups, II. J. Algebra. 169:1994;936-942.
-
(1994)
J. Algebra
, vol.169
, pp. 936-942
-
-
Ito, N.1
-
11
-
-
0001949013
-
A weak difference set construction for higher dimensional designs
-
de Launey W., Horadam K. J. A weak difference set construction for higher dimensional designs. Des. Codes Cryptogr. 3:1993;75-87.
-
(1993)
Des. Codes Cryptogr.
, vol.3
, pp. 75-87
-
-
De Launey, W.1
Horadam, K.J.2
-
12
-
-
0002233059
-
Applications of cohomology to the theory of groups
-
C. M. Campbell, & E. F. Robertson. Groups-St Andrews 1981 New York/Heidelberg/Berlin: Springer-Verlag
-
Robinson D. J. Applications of cohomology to the theory of groups. Campbell C. M., Robertson E. F. Groups-St Andrews 1981. LMS Lecture Notes. 71:1981;46-80 Springer-Verlag, New York/Heidelberg/Berlin.
-
(1981)
LMS Lecture Notes
, vol.71
, pp. 46-80
-
-
Robinson, D.J.1
-
13
-
-
0002211751
-
Hadamard matrices, sequences, and block designs
-
J. H. Dinitz, & D. R. Stinson. New York/Chichester/Brisbane/Toronto/Singapore: Wiley
-
Seberry J., Yamada M. Hadamard matrices, sequences, and block designs. Dinitz J. H., Stinson D. R. Contemporary Design Theory A Collection of Surveys. 1992;431-560 Wiley, New York/Chichester/Brisbane/Toronto/Singapore.
-
(1992)
Contemporary Design Theory a Collection of Surveys
, pp. 431-560
-
-
Seberry, J.1
Yamada, M.2
-
15
-
-
0001762205
-
Thoughts on inverse orthogonal matrices, simultaneous sign successions, and tesselated pavements in two or more colours, with applications to Newton's rule, ornamental tile-work, and the theory of numbers
-
Sylvester J. J. Thoughts on inverse orthogonal matrices, simultaneous sign successions, and tesselated pavements in two or more colours, with applications to Newton's rule, ornamental tile-work, and the theory of numbers. Phil. Mag. 34:1867;461-475.
-
(1867)
Phil. Mag.
, vol.34
, pp. 461-475
-
-
Sylvester, J.J.1
-
16
-
-
0001343791
-
On the existence of Hadamard matrices
-
Wallis J. S. On the existence of Hadamard matrices. J. Combin. Theory Ser. A. 21:1976;188-195.
-
(1976)
J. Combin. Theory Ser. A
, vol.21
, pp. 188-195
-
-
Wallis, J.S.1
|